

VISTA Science Verification:

A Mini-Survey in Orion

presented by Monika Petr-Gotzens

- M. Petr-Gotzens, G. Hussain, J. Melnick, F. Comerón, T. Stanke,
- S. Ramsay (ESO)
- J.M. Alcalá, (INAF-OA Capodimonte, Italy)
- C. Briceño (Centro de Investigaciones de Astronomía (CIDA), Venezuela)
- M. McCaughrean (University of Exeter, UK)
- M.-R. Zapatero Osorio (Instituto de Astrofísica de Canarias, Spain)
- H. Zinnecker (Astrophysikalisches Institut Potsdam, Germany)
- J. Emerson, W. Sutherland (Queen Mary Univ. London, UK)
- V. Ivanov, T. Szeifert, S. Mieske (ESO Chile)
- + ESO-Survey Team

Contours: CO-emission from Maddalena et al. (1986) Designation of regions from Blaauw (1991)

The Orion Star Forming Region

Ori OB 1a ~ 10 Myr

- Ori OB 1b ~ 5 Myr
- Sigma Ori cluster ~ 3-5 Myr

Ori OB 1c/d = Orion Nebula
 Cluster
 ~ 1 Myr

 Embedded clusters (NGC2024, NGC2068/71) and Molecular Cloud cores ~ <1 Myr

http://antwrp.gsfc.nasa.gov/apod/image/0302/orion spinelli full.jpg

Comparative studies across these groups of different age (but same genetic /same molecular cloud origin!!)

Science issues to study ...

Science issues for star formation

- The very low-mass star/brown dwarf (BD) content as a function of environment (IMF/BD formation)
- Circumstellar (protoplanetary) disk evolution over 1-10Myrs
 timescale on which giant-planets are formed
- Detail studies of protostars
 - \rightarrow to establish a clear picture of early evolution

Infrared wide-field imaging surveys as possible with VISTA are optimal for such large-scale studies

<u>Target area/Orion VISTA survey field</u>: OB 1a/1b association + molecular cloud B (clusters) → spanning ages 10 Myr - 1 Myr

20 VISTA tiles covering ~30sq.deg in YZJHKs

Image deep (!) ...

Very low-mass stars and brown dwarfs (BDs)

Large-scale areas/widely dispersed young pop. (e.g. Ori OB1a/b) not yet fully surveyed

Deep I-band (I~21.5mag) + 2MASS survey (Downes et al. 2008) identified VLMs and BDs down to 50MJup in Ori OB1a/1b

VISTA Goal:

Deep YZJHKs imaging down to the deuterium burning mass limit i.e. 12MJup

\rightarrow J~20.2 H~19.2 K~18.4 Z~22.7 Y~21.0

(based on Chabrier et al. 2000, 10Myr, Av=1)

But at 5 Myr: Ks~18.0

Survey Ks-detection limit map

[mag] ~12 Mjup @10Myr

Very low-mass stars and brown dwarfs (BDs)

Observations in all VISTA filters YZJHKs to allow a photometric selection

Spectroscopic follow-up for confirmation of youth and membership e.g. with X-shooter

Circumstellar (protoplanetary) disk evolution

- Selection of young stellar & sub-stellar objects with disks
 ⇒ Color-Magnitude & Color-Color diagrams
- Study Spectral energy distribution (SED)

combination with optical and Spitzer data

- ⇒ search for transitional objects
- \Rightarrow disk parameters from accretion and reprocessing disk models
- 🖙 Central object parameters
- ⇒ Link between disk and central object parameters

Detailed study of protostars

About 350 protostars (class 0 to class I sources), distributed all over the Orion molecular cloud A and B, have been identified by Spitzer imaging (Megeath et al. 2005, Allen et al. 2007)

<u>VISTA Goal</u>: detect and study large extended scattered emission from protostellar envelopes

Evolutionary picture of envelope properties over the lifetime of a protostar.

Observing Strategy

- 20 contiguous VISTA tiles (6 pawprint exposures per tile), plus a few sky frames for the most crowded regions
- Filters ZYJHKs (each tile), with all filters in one OB because of possible variability of young objects

Detection limits

(based on aim to detect 12Mjup/10Myr/400pc/Av=1.0mag)

	Mass detection	Mass detection	S/N	Mag limit	Exposure time	Filter
	limit at 10 Myr	limit at 5 Myr		(Vega)	per tile	
Using VISTA ET	$12 M_{Jup}$	$8M_{Jup}$	5	22.7	2880.0	Z
Seeina 0.8"	$12 M_{Jup}$	$8M_{Jup}$	8	21.0	960.0	Y
	$12 M_{Jup}$	$8M_{Jup}$	8	20.2	540.0	J
Airmass 1.4	$12 M_{Jup}$	$8M_{Jup}$	8	19.2	540.0	Н
Njitter=3-4	$12 M_{Jup}$	$8M_{Jup}$	8	18.4	720.0	\mathbf{K}_{s}

Sum of exp.times + overheads = approx. 2hrs (per OB/or per tile)

40 hrs total observing time

Quality assessment

Ρ	h	Ο	t	1 0	n e	t	r	у	
	⇒ c	ros	s - c	h e c k	with	n pre	evio	us da	ata
		C M	,	C C		dia	a g	r a m	n s
Α	S	t	r	Ο	m	е	t i	r y	
	⇒ p	o r e	c i s	ion	&	hom	ogo	enei	t y
	⇒ c	ross-c	heck	with pre	evious c	atalogs	s (2MĂ	SS, Spit	zer)
Ρ	S	F		С	h	е	С	k	S
Li	miti	na	mad	nitu	de	vs.	wav	elend	lth
C c	o m p	lete	nes	ss li	mit v	/s. \	Nave	eleng	th
S	tar	_	Ga	lax	v s	e n	ara	tio	n
	r ⊐⊃ r	n c	r v	n	h c		0		••
		Sne	ctr.	al ei	nera	v di	stri	ibuti	o n
So	urce	den	sitv	(stel	lar ar	, ∝ , an ha	laxy	count	(s)
00			Sity	(310)		ia ga	IUNY	U UUU	

