

Heavy element abundances in Galactic globular clusters

2000-2005: Master + PhD + 1-year position at the Paris-Meudon Observatory

About me...

• Since Oct. 2005: ESO fellowship in Chile

UVES Instrument Fellow... (UV-Visual Echelle Spectrograph @ VLT-UT2)

Globular clusters in the Galaxy...

NGC 6397 (ESO-MPI 2m20 + WFI)

- ~ 10⁴-10⁶ stars
- ~ 150 GCs in our Galaxy
- Spherical distribution in the Halo + disk, bulge...
 - Shapley (1918) : determined the position of the Galactic center
 - Baade (1944) : "Population II"

Fossils / witnesses of the 1st phases of the evolution of our Galaxy

"Ideal" natural labs to test different theories of chemical evolution in stars

From the first observations to the abundance "anomalies"

- 1st abundance determinations in GC stars: Helfer et al. (1959)
 - 50h of exposure time / star on the Mt Palomar 5 m telescope!
 - \Rightarrow clusters can be metal-poor ~ field stars in the Halo
- Very small dispersion in Fe abundance inside a given GC
- Zinn et al. (1985)
 - Bimodal metallicity distribution : 2 pics → [Fe/H] ~ –1.5 and –0.7
 ⇒ 2 populations (Halo + Disk)
 - Peculiar [Fe/H] distribution: there is NO cluster with [Fe/H] < $-2.5 \neq$ Halo field stars $\rightarrow -5.4$!!!

Abundance of element X : log (X) = log (X/H) + 12 [X/H] = log (X/H) - log (X/H)_ \odot

Before large telescopes:

 \rightarrow high-resolution spectroscopy only for bright giants

- No star-to-star variation of [Fe/H] in a given GC
- But abundance "anomalies": large dispersion in CN, CH, O, Na, Mg, Al... never seen in field stars!
- O-Na, Mg-Al anticorrelations and Na-Al correlations in giants

Some issues about chemical evolution in GCs

- Observations in GC giants
 ⇒ theories of chemical evolution
 - "Anomalies" seen for the element
 - Homogeneity in [Fe/H] : self-enrice
 - Testing the deep mixing scenario

•

- Spectroscopical analysis at difference
 ⇒ Stars less bright / less evolved
- 3-4 m telescopes + high-res. spe
- − 8–10 m class + efficient spectrog
 ⇒ UVES @ VLT-UT2 / HIRES @
- Origin of the clusters' metallicity
 - Test the self-enrichment scenario
 - What about the abundances of el
 - *n*-capture element abundances in giants not precise
 - \Rightarrow Access to blue part of the spectrum & unsaturated lines...

Recent progresses (part I)

- Large telescopes + efficient spectrographs
 - Abundances along the RGB and even down to MS!
- Observations of the ESO-LP "Globular Cluster Distances, Ages and Metallicities"
 - PI: R. Gratton, Padova Obs., started in 2000
 - UVES 3 clusters: subgiants + TO
 - Testing the deep-mixing scenario with different evolutionary phases + at different metallicities

Recent progresses (part II)

- Extended statistical analysis of the abundance dispersion/anomalies in globular clusters
 - Ongoing project: "Na-O Anticorrelation and Horizontal Branches" (FLAMES 19 clusters observed with GIRAFFE + UVES @ VLT-UT2)
 - Recent results:
 - Detection of He-rich/He-poor stellar populations in NGC 6218 (Carretta et al. 2007, A&A 464, 939)
 - O-Na anticorrelation in NGC 6441 (Gratton et al. 2007, A&A 464, 953)
 - Chemical composition of the peculiar bulge globular cluster NGC 6388 (Carretta et al. 2007, A&A 464, 967)

Why do we look for *s*-process elements in GCs?

The s-process

- Slow neutron captures ($\tau_{cap} >> \tau_{\beta}$)
- Two components: weak / main
 - weak-s process (A < 90)
 - He-core burning / C and N shell burning in massive stars ($M \ge 15 M_{\odot}$)

What else can we learn from heavy metals in GCs?

 \rightarrow Is there a variation as a function of the evolutionary phase? As a function of [Fe/H]?

→ *r*-process: test the self-enrichment scenario for the formation of globular clusters! (Cayrel, 1986; Truran et al., 1991; EASE scenario...)

Neutron-capture elements in GCs: first results in TO stars...

3 GCs at different metallicities → 47 Tuc (-0.70), NGC 6752 (-1.40) and NGC 6397 (-2.0)
 → NO variation in *n*-capture element abundances (star-to-star + evolutionary phase)
 → NO correlation with O, Na, Mg, AI "anomalies"
 → no detectable influence of AGB pollution / s-process elements...

GCs formed out of matter already enriched in neutron-capture elements

(James et al. 2004a, b)

FLAMES-UVES Observations of NGC 6388

Carretta et al. (2007)

One of the 10 more massive GCs
Luminous (*Mv* = -9.42, Harris 1996 on-line catalog)
Location

3 kpc from the Galactic center
10 kpc from the Sun
1 kpc from the Galactic plane

Nothing known about orbit + age...

no proper motion info!

Extended Blue Horizontal Branch!

Rich et al. 1997

Large population of RR Lyrae

Pritzl et al. 2002; Corwin et al. 2006

→ Chosen to study the possible link between chemical anomalies vs. global parameters (e.g. HB morphology)

→ Try to observe a signature of self-enrichment (predicted e.g. by Cayrel 1986 + many others...)

• Observations:

- BVI photometry from Wide Field Imager @ ESO/MPI 2.20m (Momany et al. 2003)
- 100 stars with FLAMES-GIRAFFE @ VLT-Kueyen (analysis in progress...)
- 7 stars with FLAMES-UVES (S/N~40-80 @ 500nm, R~40,000) → membership by Rad. Vel. (Harris 1996)

n-capture vs. α -elements vs. self-enrichment

• α -elements

→ test the relative contribution of core-collapse SNe II / lower mass SNe Ia

• *n*-capture elements

- → contribution + metallicity dependence in yields from massive vs. intermediate-mass stars
 - *r*-process + "weak" s-process elements \rightarrow high-mass stars (SNe II)...
 - "main" s-process elements \rightarrow He-burning shell of low- and intermediate-mass AGBs

- constraints on models of formation and early evolution of GCs (James et al. 2004 \rightarrow needed more metal-rich clusters!)

- → NGC 6388 is one of the most metal-rich GCs
- → Perfect complement to test the self-enrichment

• Cluster to cluster dispersion for *n*-capture elements

• But... "universal" [Eu/Fe] ratio in GCs

- Very small dispersion: $<[Eu/Fe]> = +0.42 \pm 0.09$ (cluster-to-cluster!) - Confirmed by litterature: 20 GCs \rightarrow +0.40 ± 0.13
- \rightarrow Confirms James et al. (2004): Eu abundance has been fixed in the ISM before the formation of GCs...

Eu follows same evolution as field stars until [Fe/H] ~ -0.70
 → Change at higher metallicity (NGC 6388 > overabundance)

• Ba evolution more complex

- *r*-process + progressive enrichment by *s*-process nucleosynthesis

• Heavy elements' abundance ratios: relative weight of the *r*- / *s*- process

• [Eu/Ba] ~ solar scaled pure *r*-process value at low [Fe/H]

- NGC 6397 (James et al. 2004)

- M 15, M 92 (Sneden et al. 1999)

• $[Eu/Ba] \neq$ pure-*r* value: s-process contribution at high [Fe/H]

- 47 Tuc (James et al. 2004)
- NGC 6388 (Carretta et al. 2007)

• BUT: NGC 6388, NGC 6441 and Bulge stars (from Gratton et al. 2003) show a very high [Eu/Y] ratio...

→ Bulge stellar populations dominated by contribution of massive star nucleosynthesis?

→ "Weak" s-process plays also a role for Y, Sr...

• Eu \rightarrow 91 % *r*-process in the Sun

• Ba \rightarrow 81 % s-process in the Sun

• Y \rightarrow 74 % s-process in the Sun

→ Clear limits to the primordial pure self-enrichment scenario for the formation of globular clusters!

