Combined Weak Lensing, Optical, and X-Ray Search for Galaxy Clusters

Jörg Dietrich Thomas Erben, Georg Lamer, Peter Schneider, Axel Schwope, Jan Hartlap, and Matteo Maturi

Galaxy Cluster Mass Function

Cluster mass function depends on

cosmology
 (Ω_m, σ₈, ...)

redshift

(Evolution of) Cluster mass function is cosmological probe.

Reliability of the Mass Function

Potential Problems

- Sample completeness.
- Mass function predicts dark matter halo number density. We observe baryonic matter.
- How reliable are our mass estimates?
 Need assumptions on dynamical/hydrostatic equilibrium.
- Do optical and X-ray cluster searches select the same population? Indication that this is not the case (Popesso et al. 2006).

Possible Solution

Gravitational lensing

- is sensitive to dark and luminous matter.
- makes no model assumption

Weak Lensing Overview

Strong Lensing – Weak Lensing

Lensing shears and magnifies background galaxies.

Jörg Dietrich,

The Effect of Lensing on Background Sources

Projected mass κ can be recovered from shear.

Measuring Shear

- Expectation value of intrinsic ellipticies vanishes, $\langle \epsilon^{(s)} \rangle = 0$
- In weak lensing $\kappa \ll 1$, $|\gamma| \ll 1$: $\epsilon \approx \epsilon^{(s)} + \gamma$
- Estimate the shear from observed ellipticities

Y. Mellier

Galaxy Cluster Search

The XMM-Newton Follow-Up Survey Dietrich et al. (2006, A&A 449, 837)

WFI imaging of deep, public XMM-Newton fields. ESO Public Survey (EIS, SSC, AIfA)

- > 15 (4 galactic & 11 extragalactic) fields in BVRI.
- Provide optical counterparts for X-ray sources.
- Public Data Release July 2005, available from ESO archive.

Private extension (AlfA, AIP)

- 14 additional fields in B and R.
- Weak lensing search for galaxy clusters.

The total area of the public and private survey is \sim 6 sq. deg.

The Aperture Mass Statistic M_{ap}

Aperture mass M_{ap} is weighted integral of tangential shear:

$$M_{\rm ap}(\vec{\theta}_0) = \int d^2 \theta \, Q(|\vec{\theta} - \vec{\theta}_0|) \gamma_{\rm t}(\vec{\theta}; \vec{\theta}_0)$$

- Optimize for expected signal (matched filter technique).
- ► Unfortunately, weak lensing is very noisy (σ_ε ≫ γ, LSS).

Consequences of Noise

Known problems

 $M_{\rm ap}$ cluster finder is noisy. Consequences:

- Lensing search for clusters will always be incomplete, except at the highest masses.
- Lensing surveys will always have > 15% false detections (Hennawi & Spergel 2005)
- Lensing peak positions show large offsets from halo center.

What to do?

Use realistic ray-tracing simulations to

- Optimize the selection criteria (significance, M_{ap}-filter scales, ...)
- ► Fix search radius to associate with cluster candidates.

Ray-tracing Simulations

- Use GIF simulations of VIRGO consortium.
- Use masks from our catalogs to simulate the holes of bright stars.
- Compute M_{ap} in 9 filter scales, corresponding to masses from ~ 1–20 × 10¹⁴ $h^{-1} M_{\odot}$.
- Output
 - ► M_{ap}
 - $M_{ap_{\times}}$ rotation by 45 deg.
 - $M_{\rm ap_{random}}$ with random galaxy orientation.
- Associate $M_{\rm ap}$ -peaks with DM halos $M > 10^{14} h^{-1} M_{\odot}$, 0.1 < z < 0.7

Offsets between M_{ap}-Peaks and DM Halos

- Association of M_{ap}-peaks with DM halos: 434 matches.
- Expect 25% random matches.
- 75% of all matches made within 2/15 (Hennawi & Spergel used 3').

 Significant fraction of false positives at all SNR.

- Significant fraction of false positives at all SNR.
- Holes, edge effects, etc. do not cause significant B-mode peaks

- Significant fraction of false positives at all SNR.
- Holes, edge effects, etc. do not cause significant B-mode peaks
- Shape noise dominates below ~ 4.25σ, then LSS projections take over

- Significant fraction of false positives at all SNR.
- Holes, edge effects, etc. do not cause significant B-mode peaks
- Shape noise dominates below ~ 4.25σ, then LSS projections take over
- ► $3\sigma M_{ap}$ not good enough.
- Not enough 5σ peaks in 6 sq. deg.
- Need to combine with other methods (optical, X-ray).

Dependance on Filter Scale

- Noise peaks preferentially in fewer filter scales.
- Real halos occur in all numbers of filter scales.

Weak Lensing Selection Criteria

- At least 3 filter scales and
- ► SNR > 3
- M_{ap} peak within 2.15 of X-ray, matched filter, or previously known cluster or

▶ SNR > 5

Weak Lensing Selection Criteria

- At least 3 filter scales and
- ► SNR > 3
- M_{ap} peak within 2.15 of X-ray, matched filter, or previously known cluster or
- ► SNR > 5
- One example of 31 cluster candidates: BLOX J1035.9–0331.9, σ = 3.7.

Another Weak Lensing Cluster

Another Weak Lensing Cluster

Optical Cluster Search

Optical Matched Filter (Postman et al. 1996):

- Single passband method.
- Convolve galaxy catalog with radial filter (Hubble, NFW, ...) and luminosity filter (Schechter function).
- Redshift dependence of luminosity function gives z estimate.

Optical Cluster Search

Optical Matched Filter (Postman et al. 1996):

- Single passband method.
- Convolve galaxy catalog with radial filter (Hubble, NFW, ...) and luminosity filter (Schechter function).
- Redshift dependence of luminosity function gives z estimate.
- One example of 116 cluster candidates: BLOX J1035.9–0331.9, z = 0.4.

X-ray Search

Search for extended X-ray sources:

- Galaxy clusters are extended source. (Nearly) everything else is a point source.
- Detect X-ray sources on XMM-Newton images.
 Perform multi-PSF fit to get extent likelihood.

X-ray Search

Search for extended X-ray sources:

- Galaxy clusters are extended source. (Nearly) everything else is a point source.
- Detect X-ray sources on XMM-Newton images.
 Perform multi-PSF fit to get extent likelihood.
- Same example: BLOX J1035.9–0331.9 One of 59 X-ray detected cluster candidates.

Results

Catalog

- ► 116 optical matched filter selected cluster candidates.
- 59 X-ray selected cluster candidates
- 31 weak lensing selected cluster candidates.
- 15 with X-ray counterparts.
- > 26 with matched filter counterparts.
- 12/31 cluster previously known.
- > 12 detected in both X-ray and optical matched filter.
- ▶ 6/12 of those previously known.

Comparison with Ray-Tracing

	Simulation	Survey
Number density (all clusters)/sq. deg.	6.1	4.8
Number density ($\sigma >$ 4)/sq. deg.	2.3	1.6

Spectroscopic Confirmation – BLOX J1035.9–0031.9

Cluster Search Summary

- Second biggest lensing selected cluster sample to date.
- Lensing is not suited to generate reliable cluster catalogs. Cosmology is still possible by direct comparison with ray-tracing simulations
- Dominant noise source at low significances is shape noise, projections of LSS take over at SNR ≥ 4.25
- Matching radii in the literature preferentially too large, efficiency even lower.
- We now have a cluster sample that allows a detailed comparison of cluster properties and selection effects.
- Follow-up spectroscopy underway. First confirmation made.
- Details available in Dietrich et al. 2007, A&A 470, 821.