Chemically Tagging the Galactic Disk

How did the Milky Way Form?

- Details of formation and evolution largely unknown
- A physical understanding of the sequence of events that led to the MW Disk
- *Fossil records:* dynamical / chemical substructures
- Sign posts for an array of events
- Disentangle their relative contributions

Chemical Tagging

Long Term Goal: Re-assemble the individual starforming aggregates in the disk (Freeman & Bland-Hawthorn, 2002)

Use detailed elemental abundance *signatures* of individual stars to tag them to common ancient star-forming events

Looking for sub-structure within the disk chemical abundance inventory ([X/H]: *C*-space)

Primary requirement: Chemical homogeneity in star-forming aggregates, e.g. Open clusters

Observational data:

- High resolution ~ 50,000
- High S/N ~ 100
- Prefer main sequence turn-off stars (use giants due to magnitude limits)
- Established memberships from literature

Cluster	Telescope/ Instrument	Age	[Fe/H]	Stars	Date
Hyades	Keck/HIRES	650 Myr	0.13	48	1996 – 2002
IC 4756	APØEchelle	700 Myr	0.04	10	Jul 2004
NGC 752	APØEchelle	2 Gyr	-0.09	12	Oct 2003
NGC 3680	VLT/UVES	1.5 Gyr	-0.17	24	Feb 2004
Collinder 261	VLT/UVES	10 Gyr	-0.03	13	May 2004
IC 4651	AAT/UCLES	1.7 Gyr	0.10	20	Jul 2004
Blanco 1	AAT/UCLES	100 Myr	0.04	10	Jul 2004
NGC1901	AAT/UCLES	500 Myr	0.00	10	Nov 2003
HR1614 group	AAT/UCLES	2 Gyr	0.25	25	Nov 2003
Arcturus group	AAT/UCLES	10 Gyr	-0.60	32	Nov 2003

Hyades Open Cluster:

Collinder 261:

De Silva et al. 2006 & 2007

Dispersing clusters: Moving groups

HR1614 moving group:

Memberships: Feltzing & Holmberg 2000, Eggen 1998

HR1614 moving group: Other element abundances

Likely contamination from field stars Besancon models:

> 1 in 7 stars within the groups' colour, magnitude and space velocities to have solar level metallicities

Homogeneity demonstrates that the chemical history is preserved despite potential pollution

Can chemically identify dispersed aggregate

Dynamical streams vs. Moving groups

Herculis stream:

HR1614 moving group:

Bensby et al., 2007

Clusters have different chemical signatures They are distinguishable in abundance space

Other Clusters:

Tautvaisiene, et al., 2000 & 2005 Yong et al., 2005 Sestito et al., 2007 Gratton & Contarini, 2004

Continuing studies

Explore more loose groups, Eg. Hyades, HR 1614 super-clusters

Do they share the chemical signature of open cluster and moving group?

Chemistry yet to be studied ...

Compare to disk cepheids

Comparable with young cepheid metallicities

=> No significant chemical evolution

Cepheid abundances: Andrievsky et al. 2002

Compare to local disk stars

Deviations may indicate uniqueness of clusters

Disk abundances from: Allende Prieto et al. 2004 Reddy et al. 2003 Edvardsson et al. 1993