

Introduction to Telescopes and Types of Instruments

A (almost) holistic view of Paranal Instrumentation

Eleonora Sani

Who I am and what I do

My journey in a snapshot

Main Scientific Topics

Active Galactic Nuclei – Star Formation connection

- Dominant process in composite sources
 - Risaliti, E.S. +06a,b; Sani+08; Sani+10;
 Sani+12b
- AGN structure and environment
 - Sani+12a; Rojas, E.S. +20; Jimenez-Gallardo, E.S. +22; Kakkad, E.S. +22; Hon, Berton, E.S. +23
- BH bulge scaling relations
 - Sani+11; Ricci, E.S.+17b; Sani+18; Ricci F., E.S. +22, Vietri, E.S.+24

 $H\alpha$ emission associated with an X-ray cavity

- Aler

IRAS 20551-4250

Rest-frame wavelength (μm)

Emission of BH-accreting gas dominates over Star Formation in mid-IR

Role and duties at ESO

My first 6 yrs at ESO

- Core duties
- Instrument scientist
- UT coordinator
- Training coordinator

Deputy Head of Paranal Science Operations

- Definition and implementation of department policies
- Line management
- Staffing plan and scheduling

Instrument Operations Team coordinator

- Oversee Instruments status and performances
- Instrument Scientist support
- Cross-department board member

What I really like Instruments are prototypes...

- Be at the forefront of astronomical technology
- Understand and stretch instruments to their limits
- Improve instrument performances and operations

• Being the joining link between the scientific community and the technical side at the Observatory

Dat

What La Silla can provide astronomers withs

What Paranal can provide astronomers with

Imagers

Give the **mugshot** of an astronomical object

Spectrographs

Give the fingerprint of an astronomical object

SPECTRALRESOLUTION $R = \frac{\lambda}{\Delta\lambda}$

 $\Delta \lambda = 0.1 \text{ nm}$ @ 600 nm R = 6000

See Luca Sbordone's talk on Spectroscopy

Give both the mugshot & the fingerprint of an astronomical object

DATACUBE

- An image at each wavelength
- A spectrum for each pixel of the image

Ionized gas filaments on cavity rim

Balmaverde et al. 2018

What astronomers really want

What all astronomers really want...

- **Sensitivity** to go deep/be efficient
- Wide field of View to capture information from extended objects/for many objects at the same time
- **High spatial resolution** to spot the smallest details ever seen
- Large wavelength coverage to collect information from many different line species/from wide continuum wavebands
- High spectral resolution to disentangle lines/to study line profiles/to spot extreme wings

All rolled into one!

Telescopes

The need for high angular resolution

Range of angular sizes

Resolution of an UT in NIR: ~ 0.050"

d=300 pc

Range of angular sizes

Diffraction law: the resolving power of a telescope is limited by its diameter, $\Delta \theta = \lambda/D$

In near-IR (1.6 microns) 1.6x10⁻⁶ m / 8 m = 0.05" (50 mas)

SgrA* EH θ= 0.00001 '' d ~ 8 kpc Quasar 3C173 θ= 0.000001 '' d= 0.6 Gpc (z = 0.158)

The effect of the atmosphere

Seeing limited observations

- 8m telescopes are limited to 0.3"-0.5" angular resolution → Can't go too small
 - Limited details

See Ana Jimene's talk

Adaptive Optics assisted observations

Data Classification: ESO PUBLIC

camera

Adaptive Optics assisted observations Extreme AO(SCAO), LTAO, GLAO, MCAO

SCAO (Single Conjugate Adaptive Optics)

- Single guide star (natural/artificial)
- Small field of view correction (< 1 arcminute)
- High spatial resolution (0.01 0.1 arcseconds)

LTAO (Laser Tomography Adaptive Optics)

- Multiple laser guide stars
- Larger field of view than SCAO (a few arcminutes)
- Comparable resolution to SCAO (slightly lower)

GLAO (Ground Layer Adaptive Optics)

- Multiple guide stars (natural/laser)
- Wide field of view correction (10-20 arcminutes)
- Reduced resolution (not diffraction-limited)
- MCAO (Multi-Conjugate Adaptive Optics)*
 - Multiple guide stars at different altitudes
 - Wide field of view (similar to LTAO)
 - High resolution across a wider field (near diffraction-limited)
 *Not available vet

AO System	Field of View	Pixel Scale (arcseconds)
SCAO	< 1 arcminute	0.01 - 0.1
LTAO	~ arcminutes	~0.1
GLAO	10 arcmin	> 0.1
MCAO*	Few arcminutes	<~0.1

Interferometry

Overview of interferometric observations

Diffraction law: the resolving power of a telescope is limited by its diameter, $\Delta \theta = \lambda / D$

In near-IR (1.6 microns) $1.6 \times 10^{-6} \text{ m} / 8 \text{ m} = 0.05$ " (50 mas)

• At 1,6 microns : $\Delta \theta < 5$ mas -> D > 70m

D=70 m?

Use of the coherence of light between telescopes

Data Classification: ESO PUBLIC

Spatial coherence of light

Young's Experiment

$$I = I_1 + I_2 + 2\sqrt{I_1 + I_2} \cos \Delta$$
$$\Delta = \varphi 2 - \varphi 1$$

In case the interfering waves have the same *frequency* and *wave number*

Spatial coherence of light

Young's Experiment

$$I = I_1 + I_2 + 2\sqrt{I_1 + I_2} \cos \Delta$$
$$\Delta = \varphi 2 - \varphi 1$$

In case the interfering waves have the same *frequency* and *wave number*

$$\Delta = \frac{2\pi}{\lambda} \mathsf{B} \sin \theta$$

Metrology system with position precision of 20 nm over 120 m (i.e. ~0.2 parts/billion)

opd(θ) opd(θ =0)

$$\Delta = \frac{2\pi}{\lambda} \mathsf{B} \sin \theta$$

"Workhorse" instruments

UVES

Ultraviolet and Visual Echelle Spectrograph (330 -1100 nm); resolving power 110000

Instrument mode	Accessible λ range (nm)	Maximum resolution (λ/Δλ)	Covered λ range (nm)	Magnitude limits
Blue arm	300-500	80,000	80	17-18
Red arm	420-1100	110,000	200-400	18-19
Dichroic #1	300-400	80,000	80	17-18
	500-1100	110,000	200	18-19
Dichroic #2	300-500	80,000	80	17-18
	600-1100	110,000	400	18-19
lodine cell	500-600	110,000	200	17

Spectroscopic Modes

Digression: dichroic mirrors

Use refraction to select certain wavebands

UVES view of Milky Way disk

UVES contribution (among many) to the ESO GAIA Survey

- 10.000 stars
- More than 40 UVES-based papers
- From the characterization of the field population to the detailed chemistry of open and globular clusters; to constrains on stellar physics and characterization of variable sources
- Exploring the limits and the systematics of high-resolution spectral analysis with multianalysis approach

Randich et al. 2022

XShooter

Broadband Echelle Spectrogrph; 3 Channels; R~3000-18000

Arm	λ-range	N. of orders	scale	AB limit
	(nm)		("/pix)	(mag)
UVB	300-560	12	0.161	21.2 (at 356.1 nm, ord N.21) 21.7 (at 438.8 nm, ord N.17)
VIS	550-1020	15	0.158	20.9 (at 653.8 nm, ord N.35) 20.8 (at 777.6 nm, ord N.21)
NIR	1020-2480	16	0.248	21.0 (at 1245.2 nm, ord N.21) 20.6 (at 1634.4 nm, ord N.16) 18.7 (at 2179.2 nm, ord N.12)

XShooter observations of first Kilonova

Broadband Echelle Spectrogrph; 3 Channels R~3000-18000

- Gravitational Wave and GRB triggers
- Identification of candidates to be the ever-observed optical counterpart of a GW
- Spectroscopic follow up for 1 month
- Heavy elements produced by rprocesses in binary Neutron Star ESO merger Data Classification:

Abbott et al. 2017

Integral Field Spectrographs MUSE, ERIS, KMOS

Instrument	Spectral Coverage	Observing Mode	Spectral Resolution	Multiplex	Note
MUSE	optical 465 - 930 nm	integral field spectroscopy	1770 @ 480nm 3590 @ 930nm	no	IFU size on sky 60"x60" with spaxel size 0.2" (WFM) or 7.5"x7.5" with spaxel size 0.025" (NFM); GLAO, LTAO, no AO; RRM.
KMOS	near-IR 0.8 - 2.5 μm	multi-object integral field spectroscopy (24 arms)	1800 - 4000	yes	24-arms Integral Field Spectroscopy; 2.8x2.8", 0.2" sampling IFU over a 7.2' field;
ERIS	near-IR 1-5 µm	imaging, coronagraphy: apodizing phase plate (K/L-band only) and focal plane coronagraphy (L/M-band only), sparse aperture mmask interferometry, integral field spectroscopy (JHK), long-slit spectroscopy (L-band only)	5000-11200 (IFS), 900 (NIX long-slit spectroscopy)	no	AO modes: NGS, LGS, LGS-SE, noAO

MUSE

Multi Unit Spectroscopic Explorer

Wide Field Mode (Currently offered)

Field of view	59.9"x 60.0"
Spatial Sampling	0.2" /pixel
Spatial resolution (FWHM)	0.4" @ 700nm
Resolving power	1770 (480 nm) 3590 (930 nm)
Limiting magnitude (1 hr, airmass=1.0, seeing 0.8"@V)	V _{AB} = 22.64 mag (550 nm) R _{AB} = 22.70 mag (650 nm) I _{AB} = 22.28 mag (784.9 nm)

Wide Field Mode with AO (Currently offered)

Gain in ensquared energy within one pixel with respect to seeing	2
Condition of operation with AO	70th percentile
Sky coverage with AO	70% at Galactic Pole

Narrow Field Mode (Currently offered)

Field of view	7.42" x 7.43"
Spatial Sampling	0.025" / pixel
Spatial resolution(FWHM)	55 mas - 80 mas
Resolving power	1740 (480 nm) 3450 (930 nm)
Ensquared Energy (25 mas)	10% - 1%
Predicted limiting flux in 1 hr	2.3x10 ⁻¹⁸ erg s ⁻¹ cm ⁻²
Predicted limiting magnitude in 1 hr	R _{AB} = 22.3 mag
Predicted limiting surface brightness in 1 hr	R _{AB} = 17.3 mag arcsec ⁻²

MUSE Deep Lensed Field on Hubble Frontier Field MACS J0416

Source 5, z=1.896

Vanzella et al. 2020 Candidate POPIII stellar complex at z=6.29

z=6.629

9270

9265

RA =+04:16:10.97

DEC=-24:03:36.4

17.1 GALACSI/MUSE (GLAO) 30 hours on MACS J0416 Spectroscopic redshift of 48 galaxies (136 multiple images) with 0.9 < z < 6.2

Vanzella, E.S., et al. 2021

Specialized Instruments Extreme-AO assisted imaging

SPHERE

SPectro-polarimetric High contrast Exoplanet REsearch

AO performance	H-band Strehl Ratio	R-band Strehl Ratio
Good	> 75%	> 20%
Median	50 - 75%	5 - 20%
Poor	< 50%	< 5%

Strehl Ratio: ratio between the expected and the observed amplitude of the signal

Modes

- Dual imaging
- Long slit spectroscopy
- Dual-polarization imaging mode
- Sparse Aperture Masking
- Choronagraphy
- Integral Field Spectroscopy

SPHERE exoplanets ans protoplanetary disks

SPectro-polarimetric High contrast Exoplanet REsearch

Avenhaus et al. 2018 Sissa et al. 2018

Direct imaging of B Pictoris b

Newborn planet swapping the protoplanetary disk

Keppler et al. 2018 Müller et al. 2018

VLT Interferometer PIONIER, GRAVITY, MATISSE

Instrument	Spectral Coverage	Observing Mode	Spectral Resolution	Multiplex	Note
GRAVITY	near-IR 2.05 - 2.45 μm	spectro-interferometry	R ~ 20, 500, & 4000	no	4 beam combiner - delivers spectrally dispersed visibilities, differential and closure phases
MATISSE	mid-IR 2.8 - 4.1 μm 4.5 - 5 μm 8 - 13 μm	spectro-interferometry	R ~ 30 (covers L&M-band) R ~ 506, 959, 3666 (L or M band) R ~ 30, 218 (N band)	no	4 beam combiner - delivers spectrally dispersed visibilities, differential and closure phases
PIONIER	near-IR 1.65 μm	spectro - interferometry	R ~ 5 or 40	no	4 beam combiner - delivers spectrally dispersed visibilities and closure phases

VLTI-PIONIER Images of a star

Large granulation cells detected on the surface of a giant star

Paladini et al. 2017

GRAVITY 'weights' the Supermassive Black Hole in the Milky way

GRAVITY 'weights' the Supermassive Black Hole in the Milky way

NACO – AO imaging