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Motivation

® Larger subapertures in LGS/NGS SH-WFS —
better sky coverage 4+ SNR,

® Centroid-based reconstruction discards everything
above tip/tilt in a subaperture,

® |Image-to-image translation allows us to fetch the

remaining useful information, approaching the limit
of SH-WFSs.



2022—2023

® Nice performance in simulation with cGAN and UNet reconstruction for:
® AO control (Smith+ UAI 2022, Pou+ SPIE 2022),
* PSF-R (Smith+ SPIE 2022, Smith+ JATIS 2023).
® Main questions raised were:
® How do we know what the network is doing? - ML Black Box
® What are the effects of noise on the estimates?
® What are the limits of these techniques?
® Turned to a statistical analysis, to learn the limits:

® Wavefront decomposition using Karhunen—Loéve (KL) modes,
® Analysis of noise impact in E2E simulations.



Generating Training Data

® |ssue - we never truly know the wavefront when on-sky.
® supervised learning requires " truth” wavefront,
® For now, simulate with sophisticated E2E AO simulation software,
® |n future, we can use an SLM or DM to generate training data on the bench.

e COMPASS - COMputing Platform for Adaptive optics SystemS
® Unlimited data for training / analysis - unique seeding of atmosphere

® Python API - easy integration with pytorch workflows
® Easily configurable for AO design / simulation tasks



conditional Generative Adversarial Network (cGAN)
Network Design?:

cGAN Components
® UNet Generator Network
® Patch GAN Discriminator

¢ Dropout noise (z)

![Isola 2017]



cGAN Network Loss

discriminator is punished for missing "fakes” and rejecting "reals”,
generator is punished for getting caught,

cGAN is extension of UNet,

i.e., Our UNet is the same cGAN with L.can(G, D) loss term set to zero.

ECGAN(Ga D) = Ex,y[/ogD(Xv y)]
+ Ey ;[log(1 — D(x, G(x, z))]
G* =arg min max Lccan(G, D)
+ AL (G) + AmL(Gum)
L11(G) = Exy lly — G(x, 2)[[1]
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Modal Analysis of UNet and cGAN

ANNSs translate WFS image to estimated WFS phase,
We compare the variance of this phase to the variance of the true phase,

Comparison is done in KL mode space, over 20k frames,

E[('pfruth] Vs E[Spgstimated]
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So cGAN is clearly better?

® This is what we thought too, but we should dig a bit deeper,

® Now let's see the variance of the residual:

Presidual = Ptruth — Pestimated

° E[Sogesidual] Vs E[Spsruth]



Variance

Variance of Residual

Variance of Difference between ML estimates and simulation

—— Variance of difference between cGAN and COMPASS modal weights
Variance of difference between UNet and COMPASS modal weights
—— COMPASS Variance of Modal Weights
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uNet # cGAN

® cGAN perfects the statistics of the phase across all modes, but not always the
right value,

¢ UNet (without discriminator) is more conservative on statistics, but actually has
better residuals.
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Previously - GAN Assisted Open Loop (GAOL) Control

GAOL performance
with variation of turbulence
vs Linear re-constructor benchmark
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UNet

SR (%)

SR (%)

Assisted Open Loop (UAOL) control (with DM shape) vs RON (+7 DM act)
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cGAN Noise analysis for PSF-R

cGAN performance on PSF-R tasks demonstrate poor performance with noisy data
Previous great results with bright guide star (Mag 3)
Noise makes cGAN networks difficult to train

Dominant noise effect appears to be photon noise



Long Exposure PSF With Noise Off

® Noise Off
® 16 x 16 apertures

® 3 x 8 pixels per sub



Long Exposure PSF With Noise On

1 Photon per pixel RON
Photon Noise On

396 Photons per sub-aperture
16 x 16 apertures

8 x 8 pixels per sub



(a) No Noise - 396 photons /sub (b) 1 RON, photon noise on
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Discussion

We have an accurate and robust method for estimating wavefront phase directly
from the WFS image for control (UNet) and PSF-R (cGAN) when noise is low,
With the KL modal analysis, we can see what each ML method is interpreting and

generating from the WFS and simulated turnulance,

UAOL control (UNet) even with reasonably low photon count has excellent
robustness to noise, Fried parameter and guide star magnitude in simulated
experiments

cGAN performance and training significantly impacted by noisy data for low
photon count, photon noise is dominant effect.



Thank you and Further reading

Enhanced adaptive optics control with image to image translation Jeffrey Smith, Jesse Cranney, Charles
Gretton, Damien Gratadour; Proceedings of the Thirty-Eighth Conference on Uncertainty in Artificial
Intelligence, PMLR 180:1846-1856

Jeffrey Smith, Jesse Cranney, Charles Gretton, and Damien Gratadour "Image-to-image translation for
wavefront and PSF estimation”, Proc. SPIE 12185, Adaptive Optics Systems VIII, 121852L (29 August
2022); https://doi.org/10.1117/12.2629638

Jeffrey Smith, Jesse Cranney, Charles Gretton, Damien Gratadour, " Image-to-image translation for
wavefront and point spread function estimation,” J. Astron. Telesc. Instrum. Syst. 9(1) 019001 (19
January 2023) https://doi.org/10.1117/1.JATIS.9.1.019001

B. Pou, J. Smith, E. Quinones, M. Martin, D. Gratadour, " Model-free reinforcement learning with a
non-linear reconstructor for closed-loop adaptive optics control with a pyramid wavefront sensor,” Proc.
SPIE 12185, Adaptive Optics Systems VIII, 121852U (29 August 2022);
https://doi.org/10.1117/12.2627849

https://github.com/GANs4AO/12IT4A0
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Performance of UNet with Noisy data - Modal Weight
variance comparison



UNet Noise - Variance of the difference



cGAN Noise - Modal Weight variance comparison



cGAN Noise - Variance of the difference



cGAN Noise - Photon Noise



COMPASS GUI - example data



Inferred result for cGAN vs
Simulation ground truth residual
phase

® Note the SH-WFS spots for
phase with milder turbulence

® A single trained network is
robust over the full range of
expected turbulence
(ro = [0.06m,0.16m])

cGAN inference (mild turbulence)



Inferred result for cGAN vs
simulation ground truth residual
phase
® Note the SH-WFS spots for
phase with stronger
turbulence
e Clearly high frequency
features are captured

cGAN inference (strong turbulence)



Long Exp. PSF from cGAN — Split View

ro = 0.093m



Long Exp. PSF from cGAN - Circular Avg.

e Data driven method captures
features missed by the
reference statistical model

® Symmetry error correction of
a few orders of magnitude

® Important for tasks such as
exo-planet detection



GAN Assisted Open Loop Control (GAOL)

Now that we have a method of estimating wavefront phase with a cGAN, we can
apply this to AO control

However, modifying the AO estimation in closed loop will alter the data our cGAN
was trained on.

Solution - apply secondary corrections from the cGAN estimates in open loop with
an independent DM.

This a relatively small change to a typical closed loop, with only one additional
DM required.



GAOL AO design

e Highlighted second control step in
open loop augments the closed loop
design

® The '"Woofer' DM applies linear
control applying low frequency
correction

® The '"Tweeter’ DM applies higher
frequency corrections (cGAN) in open
loop, which is not fed back to the
WEFS.



GAOL AO - control law

® The '"Woofer' DM uses a linear controller, using the control law below.

® The 'Tweeter’ DM is controlled by the cGAN estimates using the same control
law, however there is no feed back in this case.

® Both mirrors combine estimates with the previous iteration control solution
controlled by the gain (g)

up=0, ux=(1—-g)uk—1+ gRDuy_» + gRs

nl

g =0, uy = (1-g")uily + &M R i



GAOL Phase
Comparison

® Contrast with linear control
® Single iteration comparison for the
same input data after 2000 frames

® Clear out-performance in GAOL over
purely linear control



GAOL - actuator density

GAOL performance (Long Exposure SR) for increased actuator count vs Linear
reconstructor and Oracle benchmarks



GAOL - robustness to turbulence

GAOL performance (Long Exposure SR) with variation of turbulence (Fried parameter)
vs Linear reconstructor benchmarks (+ 7 actuators)



UNet inference

® In training sample inference
from UNet

e Notice the lack of cGAN loss
creates blurry, low frequency
phase estimates



Long Exp. PSF from UNet — Split View



UNet vs cGAN - Circular Avg.
UNet cGAN



PSF from Wavefront Phase

® Point Spread Function (PSF) can be directly calculated from the wavefront phase.

® This process is not reversible, so phase estimation provides additional
opportunities over estimating the PSF directly

PSF = |FFT(amplitude - ei~phase)|2 (6)



Training Parameters (COMPASS)

Telescope Parameters

Diameter [ 8 m
Simulated Atmospheric Parameters
Number of Layers 1
rn 0.093 to 0.400 m
Wind Velocity 10 ms—1
Target Parameters
Wavelength \: [ 1.65 um
WEFS Parameters
Number of sub-apertures 16 x 16 x 8pix
Wavelength A, 5 0.5 um
AO Parameters
Loop frequency 500 Hz
Delay 2 frames
Integrator Gain 0.4
DM Parameters
Number of DM actuators 17 x 17
1 tip-tilt mirror




SNR conversion table

Table: Relative SNR to guide star magnitude for test geometry

Readout Noise Guide Star Magnitude

10 11 12 13 14 15

6.25 3.94 2.49 157 0.99 0.63
6.17 3.82 231 1.32 0.70 0.33
5.95 3.52 1.94 0.97 0.44 0.19
5.63 3.14 1.59 0.73 0.31 0.13

WN = O

Table: Relative photon count to guide star magnitude for SH-WFS with 16 x 16 sub-apertures
and 8 x 8 pixels per sub-aperture

Guide Star Magnitude Photons per sub-aperture Photons per pixel

10 2500.00 39.06
11 995.27 15.55
12 396.22 6.19
13 157.74 2.46
14 62.80 0.98

15 25.00 0.39




Training Parameters (GAN)

Generator (UNet)

Convolutional Layers [8
Discriminator
Convolutional Layers [ 3
Training Data
Image pairs 350000
Image size 512x512pix (padded)
hyper-parameters
Lambda () 150
Lambda-Masked (Ay) 30
Batch Size 1
Epochs 65
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