A CPU BASED REAL-TIME CONTROL SYSTEM FOR ADAPTIVE OPTICS IN FREE SPACE OPTICAL COMMUNICATION

A system design and performance evaluation.

ADAPTIVE OPTICS IN FSOC

Radio vs Free Space Optical Communications

Radio		Optical
Limited	Potential Bandwidth	Very High due to high carrier frequency
Required	Spectrum Licensing	Not Required
Wide divergence (broadcast to large area) Classical Encryption schemes	Security	Narrow Divergence (Line of sight) Quantum Encryption possible
Mostly Unaffected	Robustness to weather	Cannot be used through cloud/rain
Unaffected	Robustness to atmospheric turbulence	Potential link instability

Adaptive Optics for Free Space Optical Communications

Astronomy		FSOC
High altitude above most Turbulence	Location	Ground level Potentially in towns & cities
"Weak" r ₀ = 15 - 30cm @ observation wavelength	Turbulence Strength	"Strong" $r_0 = 3 - 5$ cm @ observation wavelength
Slow	Turbulence coherence time	Fast - Increased apparent wind speed due to LEO tracking
500Hz – 1kHz	Required RTC Iteration Rate	2kHz – 10kHz
Large (2 – 40m)	Telescope Size	Small (0.3 – 1m)
Large (50000 x 5000)	AO Problem Size	~Small 1000 x 1000
Faint	WFS reference irradiance	Bright
Potentially Large	Field of View	Typically very small
Visible / Near infrared	WFS/Science Wavelength	Near infrared

AO RT Control System

- Operation split over multiple computers
- "Real-Time Pipeline" operates on dedicated RTC computer
- "Slow" Calibration and User interface operation on separate workstation
- Communication between nodes via the network
- Each stage of the Real-Time pipeline represented as stand-alone class in C++
- Python class wrapping each C++ class
- Setup and configuration all performed in Python

Software

Module

Hardware

Module

EAGLE-1 SATELLITE

- ESA, the European Commission and space companies in Europe.
- Space-based quantum key distribution system @1550nm.
- Low Earth Orbit.
- OGS-OP will be in "In-Orbit Testing" optical ground station.
- Links must be reliable AO is no longer an experiment but a critical part of the system design

EAGLE-1 AO Parameters

	arannotoro
Telescope Diameter	80cm
Minimum elevation angle	20°
Target Fried Parameter	5cm @ 1550nm
DM Actuators	32 x 32
SHWFS sub-apertures	29 x 29, SCAO
Sub-apertures pixels	8 x 8
Iteration rate	~5 kHz

Currently at DLR:

- High-performance COTS CPUbased RTC computer: Dual CPU, AMD EPYC™ 74F3
- Non-strictly real time system (linux)
- Used with AO systems with 100-200 actuators.
- "SCAO" System.

Questions:

- Can our RTC solution handle EAGLE-1?
- How many cores are optimal?
- How stable is the system?

EAGLE-1 AO Hardware

Wavefront sensor:

- Xenics Cheetah 1700.
- Up to 1700Hz full frame (640 x 512)
- ~6kHz @ 256 x 256
- Dual Channel, "CameraLink Medium" (4(!) Cables)
- Image split between channels and must be reconstructed

Deformable mirror:

- ALPAO DM820
- High Speed Ethernet Interface

Iteration rate (mean and std) vs number of cores

Benchmark:

- Using fake camera that reads from memory.
- Runs of 5000 iterations.
- Timing statistics: mean and standard dev.
- After 24 cores there is not improvement

Iteration time histogram with 24 cores

Remarks:

- Most of the ocurrences below 0.2ms.
- Some outliers.

Iteration rate vs camera frame rate

Remarks:

- AO software with Cheetah camera and ALPAO DM820
- At some point the system cannot keep up with camera frame rate.

Conclusions

AO Software fulfills EAGLE-1 requirements

- Reaches the reconstruction rate without the hardware attached
- Further optimization to be done with camera interface

The Eagle-1 satellite is due to launch in 2024 with AO commissioning in 2025