

Leibniz-Institut für Astrophysik Potsdam

High-resolution transmission spectroscopy of the super-Earth 55 CNC e

Engin Keles, Matthias Mallonn, Katja Poppenhaeger, Julian Alvarado Gomez, Laura Ketzer, Daniel Kitzmann, Thorsten Carroll, Ilya Ilin, Xanthippi Alexoudi, Klaus Strassmeier

Atmospheric characterization

Detecting atmospheric spectral signature of exoplanets during transit

Extracting atmospheric absorption

The planetary absorption arise shifted according to its orbital phase velocity on top of the stellar lines

Dividing the in-transit stellar line by the out-of-transit line removes the stellar contribution showing the shifted planetary absorption!

Extracting atmospheric absorption - the cross correlation method

For weak absorption lines, the cross-correlation method allows to combine a large amount of lines and compare templates with the observations:

Why do I care about the atmospheres ?

The comparison of exoplanet atmospheres with the solar system planet ones can give clues about planetary evolution processes

www.youtube.de

The super-Earth 55 Cnc e

Absorption signature from gaseous exoplanets have been resolved in high- resolution observations, but the Holy Grail is located towards the direction of terrestrial ones!

The super-Earth 55 CNC e seems to be one of the best candidates

Example: Mercury

Sputterring by solar irradiation leads to an exosphere that consists of of different species

Species	CD, ^[n 1] cm ⁻²	SD, ^[n 2] cm ⁻³						
Hydrogen (H)	~ 3 × 10 ⁹	~ 250						
Molecular	< 3 × 10 ¹⁵	< 1.4 × 10 ⁷						
hydrogen								
Helium	< 3 × 10 ¹¹	~ 6 × 10 ³						
Atomic oxygen	< 3 × 10 ¹¹	$\sim 4 \times 10^4$						
Molecular oxygen	< 9 × 10 ¹⁴	< 2.5 × 10 ⁷						
Sodium	~ 2 × 10 ¹¹	1.7–						
		3.8 × 10 ⁴						
Potassium	~ 2 × 10 ⁹	~ 4000						
Calcium	~ 1.1 × 10 ⁸	~ 3000						
Magnesium	$\sim 4 \times 10^{10}$	~ 7.5 × 10 ³						
Argon	~ 1.3 × 10 ⁹	< 6.6 × 10 ⁶						
Water	< 1 × 10 ¹²	< 1.5 × 10 ⁷						
neon, silicon, sulfur, iron,								

carbon dioxide, etc.

1. A Column density

2. ^ Surface density

https://en.wikipedia.org/wiki/Atmosphere_of_Mercury

Comparing atmospheric properties of 55 Cnc e with Mercury

Species	CD, ^[n 1] cm ⁻²	SD, ^[n 2] cm ⁻³				
Hydrogen (H)	~ 3 × 10 ⁹	~ 250				
Molecular hydrogen	< 3 × 10 ¹⁵	< <mark>1.4</mark> × 10 ⁷				
Helium	< 3 × 10 ¹¹	~ <mark>6 × 10³</mark>				
Atomic oxygen	< 3 × 10 ¹¹	~ 4 × 10 ⁴				
Molecular oxygen	< 9 × 10 ¹⁴	< 2.5 × 10 ⁷				
Sodium	~ 2 × 10 ¹¹	1.7– 3.8 × 10 ⁴				
Potassium	~ 2 × 10 ⁹	~ 400 <mark>0</mark>				
Calcium	~ 1.1 × 10 ⁸	~ 3000				
Magnesium	~ 4 × 10 ¹⁰	~ 7.5 × 10 ³				
Argon	~ 1.3 × 10 ⁹	< 6.6 × 10 ⁶				
Water	< 1 × 10 ¹²	< 1.5 × 10 ⁷				
neon, silicon, sulfu	r, iron,					

```
carbon dioxide, etc.
```

- 1. ^ Column density
- 2. ^ Surface density

https://en.wikipedia.org/wiki/Atmosphere_of_Mercury

Concentrating here on atomic species, for 55 CNC e:

\rightarrow A primary atmosphere seems to be ruled out

- → Non-detection of Hydrogen (Ehrenreich et al. 2012; Tabernero et al. 2020)
- → Non-detection of Helium (Zhang et al. 2021)

 \rightarrow Evidence of Sodium absorption ?

- → Tentative detection of Na (Ridden-Harper et al. 2015)
- → Non-detection of Na (Tabernero et al. 2020)
- → Evidence of ionized Calcium?
 → Tentative detection of Ca H&K (Ridden-Harper et al. 2015)

 \rightarrow Other major atomic species are not investigated yet: O, K, Mg, ...

Big Picture

55 CNC e is most probably the best studied terrestrial exoplanet to date, but its atmospheric conditions are still puzzling

Science Question

Does 55 CNC e has an exosphere full of sputtered species arising from a rocky surface

The immediate aim

We search for absorption by different atomic and ionic species due to sputtering or released by a magma ocean assuming an **Earth-like crust composition** :

ġ	Species	Composition in %	1	
a,∠∪ Sea.	0	46,1000	H	
in the	Si	28,2000	3	4
st and	AI	8,2300	Li	Be
oca r s Crus	Fe	5,6000	Lithum	Berytliur
ass, p	Ca	4,1500	Na	M
the E	Na	2,3600	Sodium	Magnesiu
e. כד ents ir	Mg	2,3300	19	20
Eleme	K	2,0900	Potassium	Calcium
. 00. / Ce of	Ti	0,5650	37	38
Indanc	Н	0,1400	Rb	Sr
s; Abu	Р	0,1050	55	56
oustics	Mn	0,0950	Cs	Ba
id Acc	F	0,0585	Caesium 87	Barium 88
ny, ar	Ba	0,0425	Fr	Ra
ronor	Sr	0,0370	Francium	Radium
s, Ast	S	0,0350		
.). ohysic	С	0,0200		
Geop	Zr	0,0165		
. ⊔ие on 14,	CI	0,0145		
Sectic	V	0,0120		
D.	Cr	0,0102		

	23																
1]																2
																	Helum
	4											5	6	7	8	9	10
	Be											Beron	Carbon	Nitrogen	Osygen	F	Ne
	12											13	14	15	16	17	18
2	Mg											Al	Silicon	Phosphorus	Sulfur	Cl	Ar
	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
an a	Calcium	Sc	Ti	Vanadium	Cr	Мп	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
2	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	lodine	Xe
	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
5	Ba	La	Hf	Tantalum	W	Re	Osmium	Ir	Platinum	Au	Hg	TI	Pb	Bi	Polonium	At	Rn
	88	89	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
	Ra	Actinium	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc		Ts	Og
		58	59	60	61	62	63	64	65	66	67	68	69	70	71]	
		Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu		
	**	90	91	92	93	94	95	96	97	98	99	100	101	102	103		
		Th	Pa	Uranium	Np	Pu	Am	Cm	Bk	Californium	Es	Fm	Md	No	Lr	0	
				-	1												

Their presence would confirm the rocky-planet scenario and their absence would hint towards the heavyweight scenario!

The transit observation of 55 Cnc e

Observation tool

The LBT (Large Binocular Telescope) and PEPSI (Potsdam Echelle Polarimetric and Spectroscopic Instrument) are used to observe one transit !

The Observation

One example spectrum of the observed wavelength range:

 \rightarrow 41 in-transit & 42 out-of-transit spectra with continuum S/N ~ 500 and S/N ~ 700 per pixel

The combined transmission spectrum

The combined transmission spectrum

 \rightarrow Masking the regions with strong telluric lines !

Results

Showing transmission spectra and cross - correlation functions for different atomic and ionic species

→ Ongoing investigation, thus only preliminary results !

Let's start the investigation with the less abundant atoms: P, Mn, Ba, Sr, S, C, Zr, Cl, V, Cr

Let's start the investigation with the less abundant atoms: P, Mn, Ba, Sr, S, C, Zr, CI, V, Cr

Let's start the investigation with the less abundant atoms: P, Mn, Ba, Sr, S, C, Zr, Cl, V, Cr

 \rightarrow The less abundant species do not show absorption

The more abundant atoms: O, Si, AI, H, Fe, Ca, Ti, Na, K, Mg

The more abundant atoms: O, Si, Al, H, Fe, Ca, Ti, Na, K, Mg

The more abundant atoms: O, Si, Al, H, Fe, Ca, Ti, Na, K, Mg

Let's continue the investigation with the less abundant ions: P+, Mn+, Ba+, Zr+, V+, Cr+

Let's continue the investigation with the less abundant ions: P+, Mn+, Ba+, Zr+, V+, Cr+

The more abundant ions: Si+, Mg+, Al+, Fe+, Ti+, Ca+

Conclusion

No absorption by species available in the Earth 's crust found in the transmission spectrum of the super-Earth 55 Cnc e, **hinting** on a heavyweight atmosphere!

