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The Moon: Pre-1959

What did we know?
What did we not know!

-Origin?

-Age?

-Formed hot or cold?
-Nature of surface?
(Mare and Terra)
-Age of surface?
-Origin of craters?




The Moon: Pre-1959

What did we know?
What did we not know!

-Origin?

-Age?

-Formed hot or cold?
-Nature of surface?

(Mare and Terra)

-Age of surface?

-Origin of craters?

-What does the other half
look like (the lunar
farside)?
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The Earth and the Solar System

You are here!

Two Parallel Revolutions in Understanding in 60+ years:
1) Global Plate Tectonics: Perception of the Earth as a Planet.
2) Space Age: The Earth in the Context of the Solar System.




60+ Years of Space Missions

Planets changed from astronomical objects to geological objects!




The Apollo Lunar Exploration Program:
Scientific Impact and the Road Ahead

234" American Astronomical Society Meeting: June, 2019
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What is the Legacy of Apollo?

APOLLO 11 - iy, APOLLOI1S

APOLLO 17




Insights
into the
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of
Earth History
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Context of the
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in the
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Terrestrial Planet Exploration: Findings & Surprises

1. Planetary formation and early evolution:

» 2. Formation and evolution of planetary crusts:
» 3. Tectonic systems and heat-loss mechanisms:
* 4. The role of size in planetary evolution:

5. Internal structure and mantle convection:

* 6. Petrogenetic evolution:
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Planets Are Moving Around in Early Solar System History!!!

South Pole-Aitken Basin

...meanwhile, back on Earth.....

/ Cataclysmic Bombardment of Earth and Moon

Earliest Isotopic Evidence of Life on Earth (~3.8 Ga)
/ Earliest Fossil Evidence of Life on Earth (~3.5 Ga)
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Origin of the Moon: Giant Impact Hypothesis

Mars-size body The Moon is formed due to
- accretion of impact ejecta

placed in Earth orbit by the event.
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1. Planetary formation and early evolution:
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* 3. Tectonic systems and heat-loss mechanisms:
* 4. The role of size in planetary evolution:

* 5. Internal structure and mantle convection:

* 6. Petrogenetic evolution:

a |SECONDARY CRUST Lithospheric conduction

Volcanic (Q Mercury, Moon, Mars
hot spot ) O
Accumulating Sea-floor , ‘TERTIARY]
basalt spreading
P Ty 7 | CRUST |

N o _ O\ 7, Metamorphism

'PRIMARY |
| CRUST |

Heavily

.
Partial ‘ﬁg
cratered ek . ,
surface \ » Erosion,
’ ? sedimentation

SegregatedModified Deeper,
primary mantle unmodified

crust mantie Plate recycling Volcanic heat pipes




Terrestrial Planet Exploration: Findings & Surprises

1. Planetary formation and early evolution:

» 2. Formation and evolution of planetary crusts:
» 3. Tectonic systems and heat-loss mechanisms:
* 4. The role of size in planetary evolution:

5. Internal structure and mantle convection:

* 6. Petrogenetic evolution:

a |SECONDARY CRUST Lithospheric conduction

Volcanic (Q Mercury, Moon, Mars

hot spot O
' T Accumulating Sea-floor 1
PRIMARY | - basalt spreading 7 TERTIARY
_CRUST | Bl /| _CRUST |

N = R/ Metamorphism
. . I‘ /'
Heavily

Partial Mantle
cratered mok o .
surface : / » Erosion,
’ 1 / ' sedimentation

SegregatedModified Deeper,
primary mantle unmodified

crust mantie Plate recycling Volcanic heat pipes




What is the Age of the Surface of Venus?
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Venus geological record is consistent with a range of
geologically recent catastrophic resurfacing models.
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Models for the Transition from
Early to Late History on Venus

Head et al. (2020) VENUS AS AN EXOPLANET
LABORATORY: THE MANY PATHWAYS TO VENUS-LIKE
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LPI Cont. 2195, #3053.
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Mercury: Linking Surface Observations to Interior Evolution
Earth

Middle Core

Relative sizes
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Terrestrial Planet Exploration: Findings & Surprises

7. Planetary processes:

8. Planetary atmospheres:

9. Spin-axis/orbital parameters:
10. Geological history:

11. Habitability:
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The Moon: A Fundamental Laboratory for the

Tronsient
Cavity

Dyc =100 km

Lunar Reconnaissance Orbiter
Lunar Orbiting Laser Altimeter (LOLA)
LRO Camera (LROC)

(Baker et al., 2010, 2011, 2012)
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Terrestrial Planet Exploration: Findings & Surprises

7. Planetary processes:

8. Planetary atmospheres:

9. Spin-axis/orbital parameters:
10. Geological history:

11. Habitability:
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Atmosphere of Venus: Recent or Fossil?

* More Earth-like clement conditions (Bullock & Grinspoon, 1996).

heavy bombardment

ss and D/H fract tion

* Oceans and an N, dominant atmosphere (Way et al., 2016; Way &
Del Genio, 2020).

-These may have carried into the
last <20% of Venus’ history
(post crypto-history; <1Ga).
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*BUT, Inverse models (Head et al. 2021§
suggest that the current atmosphere
is a fossil atmosphere?
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Climate History of Ancient Mars: “Faint Young Sun” Era

What a warm and wet early Mars might have looked like

B Ocean
Elevation (m)
e 21249

-8208

Credit: Wei Luo, Northern lllinois University e s X ,.(a—*'

“Cold & Icy” Early Mars
With Punctuated Heating
and Melting of Ice.

(Wordsworth et al. 2013)
(Luo et al., 2017) (Head and Marchant, 2015)

“Warm & Wet” Early Mars
With Extensive Oceans.
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Water and Climate on Mars: Relation to Geologic History/Habitability
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Volcanism. Billions of Years

- Qutflow channels.
- Oceans?

- Heavy Impact

bombardment, voicanism.
- Valley networks. Christensen et al. TES, THEMIS
- Open-basin lakes.

- "Warm/Wet"” early Mars?

- South circumpolar | Murchie et al. (2010) Mustard et al. CRISM

glacial deposits.

surface volcanic actuvuty
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phyllosian | l theiikian
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- Low Impact rates.

- Tharsis voicanism
continues.

- Qutflow channels continue
at much lower rate.

- Tropical and mid-latitude
glaclation.

- Late-stage latitude
dependent mid-high latitude
layers.

- Late-stage polar caps.
- “Cold/Dry" late Mars.
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Some Perspectives and Caveats:

e 1. Terracentrism: A - | :’ 2

2. Uniformitarianism/Catastrophism:
* 3. The Role of Stochastic Processes:
* 4. The Promise and Pitfalls of Paradigms:
* 5. The Space-Time Continuum:

* 6. Don’t forget option d): “None of the above!”




Era of Solar System Comparative Planetology

Neptune
Uram

J up&;er
Mars

artl%
Ven s .
7(Mercury

Many fundamental questions remain!!




60+ Years Since Sputnik: The Next 60 Years :

Answers to our questions lie in:

1) The results of space missions to be undertaken
in the next 60 years of Solar System exploration!

INNER SOLAR SYSTEM

*
NMERCURY YENUS EARTH MYR S
Tau Bootis
38 M

047MJ 21.Peg

068MJ Upsilon Andromedae

0.84 MJ 55 Cancri

21 MJ Gliese 876

RhoCr B

® 1M

HD 114762

.

@ 10Md

70Vir
@ 66MJ

16Cug B
e 1.7 MJ

.

47 UMa

®24Md
Gliese 614 .
THE ARTEMIS PROGRAM

2

ORBITAL SEMIMAJOR AXIS (AU) PHASE ONE:

2) The new era of South Pole by 2024
Comparative Planetary Systems
around other stars.



ON THE FREQUENCY OF POTENTIAL VENUS ANALOGS FROM KEPLER DATA

STEPHEN R. KANE!, Ravi KuMAR KOPPARAPU?®%56 SHAwN D. DOMAGAL-GOLDMAN’
Submitted for publication in the Astrophysical Journal Letters
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ON THE FREQUENCY OF POTENTIAL VENUS ANALOGS FROM KEPLER DATA

STEPHEN R. KANE!, Ravi KuMAR KOPPARAPU?®%56 SHAwN D. DOMAGAL-GOLDMAN’
Submitted for publication in the Astrophysical Journal Letters
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Key Points:

+ The characterization of terrestrial
exoplanets, including interior
structure and atmospheres, is
becoming a primary focus of
exoplanetary science
The boundaries of habitability are
best understood through the study of
the extreme environments present
on Earth and Venus
There are many outstanding
questions regarding Venus that are
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Venus as a Laboratory for Exoplanetary Science

Stephen R. Kane' ', Giada Arneyz, David Crisp3 , Shawn Domagal-Goldman2 ,
Lori S. Glaze?' ", Colin Goldblatt* ' *, David Grinspoons ,James W. Head® ', Adrian Lenardic’
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The Era of Comparative Planetary Systems!
An Era of Collaboration Between
Astronomers and Planetary Geoscientists!

EXINLANETSS

== 5 § > %




James E. Webb — NASA Administrator
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The Era of Comparative Planetary Systems!

Let’s Play Marbles Together!!




Solar System Community Opportunities:

* Other planetary systems offer untold numbers of individual
examples of planets, systems of planets, and stars.

* Exploration of this huge parameter space is yet another
framework for increased understanding of the origin and

evolution of our Solar System.

* The Exoplanet Perspective can also assist in the development
of future Solar System exploration strategies.

Exoplanet Community Opportunities :

* The Solar System Perspective provides a rich and accessible
record of the origin, evolution and fate of a small number of
planets and satellites.

* The lessons learned from initial assumptions and evolving
outcomes is both instructive and sobering, and provides a
template for exploring and understanding other planets and
planetary systems.
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