

Overall strategy

- ALMA mm/sub-mm flagship facility
- ELT future O/IR flagship facility
 - faint, high-angular resolution, near-infrared
- VLT/I current O/IR flagship facility
 - multi-purpose instrumentation
 - > focus on unique capabilities
 - optical/ultraviolet, versatility, flexibility, angular resolution
- 4m telescopes dedicated to specific topics
 - ➤ VISTA → surveys (VIRCAM → 4MOST)
 - ➤ 3.6m → radial velocity studies (HARPS, NIRPS)
 - NTT → transient spectroscopy (EFOSC2 → SOXS)

VLT/I Opportunities

- Four 8m telescopes
 - flexibility
 - scientific throughput
 - 1200 observing nights/year
- Successful operational model
 - > expand existing model to allow new modes
 - high time resolution photometry and spectroscopy
 - faster turnaround (currently DDT)
 - closer interaction with user, e.g. remote observing
- Telescope system
 - > spatial resolution from 1 degree to 2 mas
 - ➤ wavelength coverage from 320nm to 20µm
 - spectral resolutions from a few to 100000

Multi-Wavelength Astrophysics

- ESO offers access to optical, infrared and sub-mm wavelength ranges
- VLT/I provides many resolution scales
- Operational model adapted to fast reactions/transient targets

Figure 1: Wavelength-Spectral Resolving power diagram for the VLT instruments of 1st and 2nd generation.

Figure 2: Wavelength-angular resolution diagram for the VLT/I instruments of 1st and 2nd generation.

Current VLT instruments

Spectrographs:

- High: UVES, ESPRESSO, CRIRES
- > Mid: XSHOOTER
- Low: FORS2, ERIS, VISIR

Imagers:

- ➤ Visible: FORS2
- ➤ Near IR: HAWK-I, ERIS
- ➤ Mid-IR: VISIR

MOS:

- > FLAMES (fibers)
- > FORS2 (slitlets)
- > KMOS (mini-IFUs)

IFU:

- > ERIS
- > MUSE

Interferometric:

- **PIONIER**
- > GRAVITY
- > MATISSE

Paranal Facilities

- VLT
 - Instrumentation operating, in assembly and planned
 - Covers the available optical infrared wavelengths 300nm to 20µm
 - Angular resolution from seeing limit to 50 µ-arcseconds
 - FORS2, UVES, FLAMES, VISIR, HAWK-I, X-Shooter, laser guide star facility, KMOS, MUSE, SPHERE, Adaptive Optics Facility, ESPRESSO, CRIRES+, ERIS, MOONS, CUBES, MAVIS
- VLTI
 - > PIONIER, GRAVITY, MATISSE
- VISTA
 - > VIRCAM, 4MOST
- **VST**
 - > ΩCam

Paranal 2020

VLT unique capabilities

Everything about instruments

https://www.eso.org/sci/facilities/paranal/instruments.html

Schwarzschild precession around Sgr A*

SINFONI and GRAVITY culminate 30 years of observation of star S2 using ESO facilities

New S2 orbit nearly excludes all possible additional intermediate mass black hole around Sgr A*

VLTI observes exoplanets

- GRAVITY astrometry of HR8799e (x10 better than AO) disproves co-planar hypothesis for HR8799b-e orbits.
- Carbon to oxygen ratio measurement for β Pic c favours core-accretion formation scenario

Disappearance of a star

Long-term observations of an LBV in the dwarf galaxy

PHL293B

Combination of new and archival data from

- ESPRESSO, X-shooter, UVES, HST/COS, INT/IDS, WHT/ISIS
- Disappearance of the broad wings in the H lines after 2009
 - LBV changed from active state
- Either star dropped in luminosity and increased temperature (plus some dust)
- Or LBV collapsed to a black hole without a supernova

Allan et al. 2020

Shapes of Asteroids

- Origin of asteroids → collisional debris?
- SPHERE observations of (10)Hygiea
- Shape nearly spherical and surface without major

Hygiea

craters

- contrary to,e.g., (4)VESTA
- diameter 440km
- density 2000kg/m³
- Formation
 - > possibly after a major impact
 - > reformed from the debris under self gravity
 - > signatures of a minor planet

Vernazza et al. 2019

An exomoon in formation

- Synergy between ALMA and VLT
- PDS 70: T Tauri star with a VLT/SPHERE-discovered companion PDS 70 b (Müller et al. 2018)
- Hα emission (VLT/MUSE) at location of two planets indicates accretion onto these planets (Haffert et al. 2019)
- Initial analysis of ALMA data show a highly structured disk (Keppler et al. 2019), with an upper limit of circumplanetary material around PDS 70 b of 0.01 M_{Farth}
- Further analysis of the ALMA continuum emission at the location of PDS 70 c constrains this to the presence of 2-4 x 10⁻³ M_{Earth} in the form of dust, enough to form an exomoon (Isella et al. 2019), assuming typical dust-to-gas ratios

The ESO exo-planet machinery

- HARPS at 3.6m telescope (in the future also NIRPS)
 - > best radial velocity machine at a 4m telescope
 - extremely stable spectrograph
 - ESPRESSO at VLT
- SPHERE
 - > adaptive optics supported imaging and spectroscopy
- VLTI/GRAVITY
 - highest spatial resolution for followup observations of known systems
- FORS2/ERIS
 - > transit measurements, atmospheres of exo-planets
- CRIRES+
 - spectroscopy of atmospheres

Science with Paranal/La Silla telescopes

- Contributions to nearly all of astrophysics
 - Solar system
 - Trans-Neptunian Objects, asteroids, comets
 - > Exo-planets
 - direct imaging, temperate planets, planetary systems
 - Stellar physics
 - metal-poor stars, supernovae, neutron star mergers
 - Milky Way structure
 - galactic centre, distances
 - Galaxy evolution
 - redshift surveys, rotation curves, absorption studies
 - Cosmology
 - accelerating universe, background temperature, chemical evolution

Current Status of VLT/I instrumentation development

- GRAVITY for MATISSE commissioned and offered
- CRIRES mounted on UT3
 - Commissioning pending
- ERIS nearly completely integrated
 - > PAE expected towards the end of 2020
- MOONS integration progressing
- 4MOST in construction phase
- FORS Upgrade project started
- MAVIS Phase A finished
- CUBES Phase A started
- NIRPS/3.6m and SOXS/NTT in integration phase

CRyogenic InfraRed Echelle Spectrograph

- Upgrade of exisiting AO-assisted high resolution spectrograph at 1-5µm (R=100,000)
- Use Hawai 2RG up to 5µm: wavelength coverage x10
 - exoplanets velocimetry and atmosphere
- Polarimetry
 - Stellar magnetism

https://www.eso.org/sci/facilities/paranal/instruments/crires/overview.html

Enhanced Resolution Imager and Spectrograph

- Near IR 1-5 µm with 4LGS and adaptive secondary
- Replaces NACO and SINFONI
- Imager, coronagraph, sparse mask, IFU 1-2.5µm, LSS 3-5µm
- Exoplanets, GC, resolved stellar pops, high-z, ...

http://www.eso.org/sci/facilities/develop/instruments/eris.html

Multi Object Optical and Near-infrared Spectrograph

- 1001 fibres over 500 arcmin²
- 0.65-1.8µm at R=4000-18000
- Science cases:
 - Galactic archeology
 - Growth of galaxies: million objects at z>1
 - First Galaxies (z>7)

https://www.eso.org/sci/facilities/develop/instruments/MOONS.html

4MOST

- Wide-field MOS on VISTA
 - ➤ FoV ~4.1 deg²
 - > 2436 fibres observed simultaneously
 - 812 fibres with R~20000; $400nm < \lambda < 680nm$ (three settings)
 - 1624 fibres with R~5000; $370nm < \lambda < 950nm$

Surveys only

Galactic archeology

Galactic structure

Galaxy surveys

Redshift surveys

Planned 2023

Cassegrain Cable Wrap

Fibre Positioner

Fibre System

Cassegrain Cable Wrap

Low-Resolution Spectrograph and Detector Systems

Fibre System

https://www.4most.eu/

Instruments in development

MAVIS:

- MCAO in the visible: imager and spectrograph
- Phase A finished
- http://mavisao.org/mavis/
- Near-UV high-resolution spectrograph
 - New instrument (CUBES)
 - Phase A started
 - https://cubes.inaf.it

VLT in 2030

VLT/I in 2030

- Kicked-off at a Workshop in June 2019
 - > Well attended, largely by instrument builders
- Science prioritization exercise explicitly polled the scientific community about science drive of the evolution of VLT/I, outcome injected into exercise
- White Papers delivered by 3 teams
- Reviewed at the 16-17 April 2020 STC meeting, clear priorities established:
 - GRAVITY+ https://zenodo.org/record/3356274
 - BlueMUSE https://arxiv.org/abs/1906.01657
- Teams informed in June
- Phase A planning started

Stay involved

- Student- and Fellowship programmes
 - https://www.eso.org/sci/activities/FeSt-overview/ESOstudentship.html
 - https://www.eso.org/sci/activities/FeSt-overview/fellowship_programme.html
- Visitor programme
- Workshops and conferences
- ESO Messenger
 - https://www.eso.org/sci/publications/messenger/
- Science Newsletter
 - https://www.eso.org/sci/publications/newsletter.html
- Web pages: www.eso.org

