

Minor Bodies in our Solar System, as seen by FORS

Olivier Hainaut | ESO | Public

O.Hainaut | Minor bodies in our Solar System | FORS 20th Anniversary | 12 March 2019 | ESO Public

2

• •

Δ

O.Hainaut | Minor bodies in our Solar System | FORS 20th Anniversary | 12 March 2019 | ESO Public

- First TNO (after Pluto): 1992 QB1, Hawai`i
- Second one: 1993 FW
- By 2000: 100 = a population
- Today: 2000 objects
- → ESO large program for the characterization of the TNOs
- → 2d ESO large program for the characterization of the TNOs

TNO LP1 and LP2

- 2001A&A...380..347D BVRI Photometry of 27 Kuiper Belt Objects with ESO/Very Large Telescope
 Delsanti, A. C.; Boehnhardt, H.; Barrera, L. et al.
- **2002A&A...395..297B ESO large program on physical studies of Transneptunian Objects and Centaurs:** Visible photometry - First results -Boehnhardt, H.; Delsanti, A.; Barucci, A. et al.
- 2004A&A...421..353F ESO Large Program on physical studies of Trans-Neptunian objects and Centaurs: Final results of the visible spectrophotometric observations - Fornasier, S.; Doressoundiram, A.; Tozzi, G. P.et al.
- 2004A&A...417.1145D Simultaneous visible-near IR photometric study of Kuiper Belt
 Object surfaces with the ESO/Very Large Telescopes Delsanti, A.; Hainaut, O.; Jourdeuil, E. et al.
- 2010A&A...510A..53P Colors and taxonomy of Centaurs and trans-Neptunian objects Perna, D.; Barucci, M. A.; Fornasier, S. et al.
- 2008A&A...487..741A Visible spectroscopy of the new ESO large program on trans-Neptunian objects and Centaurs. Part 1 - Alvarez-Candal, A.; Fornasier, S.; Barucci, M. A. et al
- 2009A&A...493..283D Visible and near-infrared colors of Transneptunian objects and Centaurs from the second ESO large program - DeMeo, F. E.; Fornasier, S.; Barucci, M. A. et al
- 2009A&A...508..457F Visible spectroscopy of the new ESO large programme on trans-Neptunian objects and Centaurs: final results Fornasier, S.; Barucci, M. A.; de Bergh, C. et al

Etc....

100

96/100

Physical understanding of the population as a whole

Physical understanding sub-populations Ultra-wide TNO binaries

"We find that gravitational collapse binary formation models produce an orbital distribution similar to that currently observed, which along with a confluence of other factors supports formation of the cold Classical Kuiper Belt in situ through relatively rapid gravitational collapse rather than slow hierarchical accretion."

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 UTC Date

Parker+ 2011ApJ...743....1P

Constrain other fields:

- > dynamical evolution of early Solar System,
- > planet migration,
- architecture of the Asteroid Belt,
- > exoplanet system architecture...

Comets

12

O.Hainaut | Minor bodies in our Solar System | FORS 20th Anniversary | 12 March 2019 | ESO Public

Comets Population

Cometary Activity at large heliocentric distances: Start/end of activity (FORS!) Thermal models

O.Hainaut | Minor bodies in our Solar System | FORS 20th Anniversary | 12 March 2019 | ESO Public

Comet Highlight

1P/Halley

- FORS1 + FORS2 + VIMOS, 32ks
- ➢ V= 28.2, r= 28.1 au

CO-driven activity

20

R (AU)

15

25

30

Szabo+ 2012ApJ...761....8S

35

40

Bare nucleus 1P/Hallev

C/Hale-Bopp's nucleus

r=37km, 8% albedo increased <- re-depositoin of icy grains</p>

Comets / Space Mission

EPOXI and 103P/Hartley 2

Snodgrass, Meech, Hainaut 2010A&A...516L...9S The nucleus of 103P/Hartley 2, target of the EPOXI mission

Deep Impact / Stardust-NExT and 9P/Tempel 1

- Meech+ 2011Icar..213..323M Deep Impact, Stardust-NExT and the behavior of Comet 9P/Tempel 1 from 1997 to 2010
- Weiler+ 2007lcar..190..423W The gas production of Comet 9P/Tempel 1 around the Deep Impact date

Rosetta and 67P/Chury

- > Tubiana+ 2008A&A...490..377T Comet 67P/Churyumov-Gerasimenko at a large heliocentric distance
- > Agarwal+ 2010lcar..207..992A The dust trail of Comet 67P/Churyumov-Gerasimenko between 2004 and 2006
- > Tubiana+ 2011A&A...527A 67P/Churyumov-Gerasimenko at large heliocentric distance
- > Tozzi+ 2011A&A...531A..54T Evolution of the dust coma in comet 67P/Churyumov-Gerasimenko before the 2009 perihelion
- > Vincent+ 2013A&A...549A.121V Spin and activity of comet 67P/Churyumov-Gerasimenko
- Snodgrass+ 2016A&A...588A..80S Distant activity of 67P/Churyumov-Gerasimenko in 2014: Ground-based results during the Rosetta pre-landing phase
- Moreno+ 2016A&A...587A The dust environment of comet 67P/Churyumov-Gerasimenko from Rosetta OSIRIS and VLT observations in the 4.5 to 2.9 AU heliocentric distance range inbound
- Stinson, Bagnulo, Tozzi 2016A&A...594A.110S Polarimetry of comets 67P/Churyumov-Gerasimenko, 74P/Smirnova-Chernykh, and 152P/Helin-Lawrence
- Moreno+ 2017MNRAS.469S.186M The dust environment of comet 67P/Churyumov-Gerasimenko: results from Monte Carlo dust tail modelling applied to a large ground-based observation data set
- Opitom+ 2017MNRAS.469S.222O Ground-based monitoring of comet 67P/Churyumov-Gerasimenko gas activity throughout the Rosetta mission

Comets / Space Missions

- 67P/Chury: pre-Rosetta:
- Characterization of
 - The nucleus,
 - > The activity profile, dust properties
 - Gas production rates
 - \rightarrow prepared Rosetta's strategy

JUPITER

2 3 4 5 r (AU) Spectro: gas production rates Snodgrass+ 2016A&A...588A..80S

CI 201

Comets / Space Missions

67P/Chury during Rosetta:

- Gives context
 - Spatial (different scales)
 - Temporal (seasonal effects)
- Link with other comets
 - (observed only from the Ground)

Dust production during Rosetta Opitom+ 2017MNRAS.469S.222O

Asteroids & Polarimetry

FORS & Polarization

- Boehnhardt+ 2008A&A...489.1337B Photometry and polarimetry of the nucleus of comet 2P/Encke
- Cellino+ 2014MNRAS.439L..75C
 A successful search for hidden Barbarians in the Watsonia asteroid family.
- Bagnulo+ 2015MNRAS.446L..11B Linear spectropolarimetry: a new diagnostic tool for the classification and characterization of asteroids.
- Bagnulo+ 2016A&A...585A.122B Broadband linear polarization of Jupiter Trojans
- Bagnulo+ 2017EPJP..132..405B Polarimetry of small bodies and satellites of our Solar System

NEO prevention

ESO

in collaboration with ESA Planetary Defence Office, in the context of the International Asteroid Warning Network, in UN-Committee for the Peaceful Use of Outer Space:

- Recover / refine the orbit of threatening NEOs that are too faint for NEO facilities (up to 12h/semester)
- > Characterize an upcoming impactor to prepare mitigation.

2009 FD, mag=26.5, threat decreased 10x ESO ann14004

1I/`Oumuamua

ESO DDT VERY URGENT - are you reachable? 2 ∑ Inbox × URGENT × 2017-oct-19 Discovery @ PS1 2017-oct-22 Hyperbolic orbit \geq Karen Meech meech@ifa.hawaii.edu vi Mon, 23 Oct 2017, 21:52 to Olivier, Karen 2017-oct-23 Alert \geq New discovery needs immediate followup can be done from S - MKO has horrible weather next few nights. I'm going to see if we can trigger our GN program in on GS -2017-oct-24 DDT submitted \triangleright but we should probably put in a DDT for the VLT. 2017-oct-24 evening: FORS is observing \geq Κ

First interstellar object

- Huge elongation ~10:1
- Colours are ~comet-like
- Non-gravitational forces are comet-like
- Many questions; 5 papers (2 Nature) out of this DDT

FORS

22

LIOVILLIA

Significant contribution to population studies

- TNOs
- Comets
- Main-Belt Comets and Active Asteroids

Strong support to Space Missions

- Rosetta @ 67P
- Deep Impact @ 9P/T1

A series of unique/ record/ special object characterized

Special mention:

- Versatility well adapted to Solar System objects
- Power of polarimetry
- Super DDT tool

➔ When can we get FORS+ ?