# **Comparing Performance of Machine Learning Algorithms for Galaxy Classification**

F. Korhan YELKENCi<sup>1,3</sup>, E. Kaan ÜLGEN<sup>1</sup>, Sinan ALİŞ<sup>1,2</sup>, Süleyman FİŞEK<sup>1,2</sup>

<sup>1</sup>İstanbul University, Dept. of Astronomy and Space Sciences - Turkey <sup>2</sup>İstanbul University Observatory Application and Research Center - Turkey <sup>3</sup>İstanbul University, Dept. of Informatics - Turkey

> E-mail: yelkenci@İstanbul.edu.tr Web: cosmology.İstanbul.edu.tr



AIA2019, 22-26 July 2019, ESO HQ, Garching, Germany

- Galaxy Data: Deep, wide, big and good quality.
- We don't have enough number of eye to classify all galaxies.
  - Visual classification may have some biases or misclassifications.
  - At high redshift, human eye is ineffective to classify galaxies.
  - We can use parametric features of galaxies to classify (colurs, structural parameters, sersic indices, etc.).
  - Try to understand galaxy morphologies.
- Machine learning algorithms are now more efficient and reliable.
  - Comparing performances of ML algorithms on galaxy classifications
  - How accuracy changes by using different parametric features.
  - To see whether accuracy of ML algorithms change with redshift.
- Astronomical data will burst in next years.

## Background

| Statistical<br>learning<br>method           | Total sample      | Training set              | Test set                                                                                        | Number of classes                     | Dimensions    | Accuracy                                        | Reference                                                  |
|---------------------------------------------|-------------------|---------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------|---------------|-------------------------------------------------|------------------------------------------------------------|
| SVM                                         |                   | <000 (00 )                | 1505 (20)                                                                                       |                                       | (             | 75.8 per cent                                   |                                                            |
| NN<br>CT<br>CTRF                            | 7528              | 6022 (80 per cent)        | 1506 (20 per cent)                                                                              | 5                                     |               | 76.0 per cent<br>69.0 per cent<br>76.2 per cent | Results from our work                                      |
| SVM )                                       | $\sim 1500$       | 500 (33 per cent)         | 1000 (67 per cent)                                                                              | 2 (early-type,<br>late-type)          | 12            | 80 per cent                                     | Huertas-Company<br>et al. (2007)                           |
| NN                                          | $\sim \! 1000000$ | ~75 000<br>(7.5 per cent) | ~925 000<br>(92.5 per cent)                                                                     | 3 (early-type,<br>spirals, point      | 12            | 90 per cent                                     | Banerji et al. (2010)                                      |
| Oblique CT                                  | 5217              | $\sim 4174$ (80 per cent) | $\sim$ 1043 (20 per cent)                                                                       | 5 (E, S0, Sa+Sb,<br>Sc+Sd, Irr)       | 13            | 63 per cent                                     | Owens et al. (1996)                                        |
| Three CT<br>algorithms<br>including<br>CTRF | 75 000            | 67 500<br>(90 per cent)   | 7500 (10 per cent)                                                                              | 3 (ellipticals,<br>spirals, unknown)  | 13            | 96.2 per cent                                   | Gauci et al. (2010)                                        |
| ConvNet                                     | 58 000            | 47 700<br>(~82 per cent)  | 5000 (~9 per cent)<br>5300 (~9 per cent)<br>used for<br>real-time evaluation<br>during training | 5 (probablities <sup><i>a</i></sup> ) | Run on images | ∼99 per cent                                    | Huertas-Company<br>et al. (2015)<br>Dieleman et al. (2015) |

*Note.* <sup>*a*</sup>Probabilities for each galaxy having a disc or a spheroid, being a point source, having an irregularity or being unclassifiable are the outputs.

Sreejith et al., MNRAS 474, 5232–5258 (2018)

### Schema of Application



8 Parametric features: ui, gr, gi, deVAB\_r(b/a), deVRad\_r(eff radius), CI (petroR50\_r/petroR90\_r), absMagR , sersic\_n)
4 Structural features: deVAB\_r(b/a), deVRad\_r(eff radius), CI (petroR50\_r/petroR90\_r), sersic\_n)
4 Photometric features: ui, gr, gi, absMagR )

### Machine Learning Algorithms



- o SVM
  - o SVC

• Gaussian Naive Bayesian

Random Forest

• Neural Network



#### • SDSS - Galaxy Zoo:

https://data.galaxyzoo.org https://www.sdss.org Lintott et al. 2008, MNRAS, 389, 1179 Lintott et al. 2011, 410, 166



#### • CFHT-LS

https://www.cfht.hawaii.edu/Science/CFHTLS/





## Galaxy Zoo DATA

- 60932 galaxies → Elliptical: 28591, Spiral: 32341 visually classified in Galaxy Zoo.
- Redshift range: 0 < z < 0.15
- with Sersic Index
- Train and Test sets (%70/30 : 42652 / 18280)





#### Galaxy Zoo DATA: Results for all 8 parameters (ui, gr, gi, deVAB\_r(b/a), deVRad\_r(eff radius), CI (petroR50\_r/petroR90\_r), absMagR, sersic\_n)



| Score    |
|----------|
| 0.955383 |
| 0.954773 |
| 0.949405 |
| 0.947247 |
| 0.928444 |
| 0.912900 |
|          |

# Galaxy Zoo DATA: Results for 4 structural parameters (deVAB\_r(b/a), deVRad\_r(eff radius), CI (petroR50\_r/petroR90\_r), sersic\_n)



| Model         | Score    |
|---------------|----------|
| Random Forest | 0.938151 |
| XGBoost       | 0.937682 |
| NN            | 0.936697 |
| SVC           | 0.925068 |
| KNN           | 0.909031 |
| Naive Bayes   | 0.903521 |

# Galaxy Zoo DATA: Results for 4 photometric parameters (ui, gr, gi, absMagR)



#### Galaxy Zoo DATA: Comparison of ROC graphs of 6 Machine Learning Algorithms

1.00





11

| Random Forest – Parameters |            | XGBoost - | XGBoost - Parameters |  |
|----------------------------|------------|-----------|----------------------|--|
| Feature                    | Importance | Feature   | Importance           |  |
| deVAB_r                    | 0.268648   | CI        | 0.485405             |  |
| CI                         | 0.241121   | deVAB_r   | 0.157679             |  |
| sersic_n                   | 0.188087   | sersic_n  | 0.106899             |  |
| gi                         | 0.086840   | ui        | 0.083637             |  |
| ui                         | 0.083662   | gi        | 0.074488             |  |
| gr                         | 0.051916   | gr        | 0.038916             |  |
| absMagR                    | 0.039950   | deVRad_r  | 0.034296             |  |
| deVRad_r                   | 0.039776   | absMagR   | 0.018678             |  |

#### 4 structural

| XGBoost - Parameters |            |  |
|----------------------|------------|--|
| Feature              | Importance |  |
| CI                   | 0.551122   |  |
| deVAB_r              | 0.219104   |  |
| sersic_n             | 0.171079   |  |
| deVRad r             | 0.058695   |  |

#### 4 photometric

| XGBoost - Parameters |            |  |
|----------------------|------------|--|
| Feature              | Importance |  |
| ui                   | 0.584734   |  |
| gr                   | 0.182217   |  |
| absMagR              | 0.171967   |  |
| gi                   | 0.061082   |  |

### Galaxy Zoo DATA: Accuracy distribution as a function of redshift



#### Galaxy Zoo Data: Recalls and Precisions as a function of redshift



## Our Own Zoo: CFHTLS - W1 catalogue

- 2500 / 180000 galaxies visually classified
- Ellipticals: 1053, Spirals: 1423 -> 2476
- Redshift range: 0 < z < 0.5
- Train and Test sets (%70/30 : 1733 / 743)





#### Own Zoo DATA: Results for all 8 parameters (ui, gr, gi, deVAB\_r(b/a), deVRad\_r(eff radius), CI (petroR50\_r/petroR90\_r), absMagR , sersic\_n)



| Score    |
|----------|
| 0.875356 |
| 0.874794 |
| 0.865559 |
| 0.854586 |
| 0.834990 |
| 0.812446 |
|          |

# Own Zoo DATA: Results for 4 structural parameters (deVAB\_r(b/a), deVRad\_r(eff radius), CI (petroR50\_r/petroR90\_r), sersic\_n)



| Model         | Score    |
|---------------|----------|
| NN            | 0.857467 |
| XGBoost       | 0.856320 |
| Naive Bayes   | 0.848819 |
| Random Forest | 0.847668 |
| SVC           | 0.841901 |
| KNN           | 0.830948 |
|               |          |

# Own Zoo DATA: Results for 4 photometric parameters (ui, gr, gi, absMagR)



| Model                                         | Score                                        |
|-----------------------------------------------|----------------------------------------------|
| KNN                                           | 0.737433                                     |
| SVC                                           | 0.735161                                     |
| XGBoost                                       | 0.730503                                     |
| Random Forest                                 | 0.721863                                     |
| NN                                            | 0.721286                                     |
| Naive Bayes                                   | 0.704537                                     |
| XGBoost<br>Random Forest<br>NN<br>Naive Bayes | 0.730503<br>0.721863<br>0.721286<br>0.704537 |

#### Our Own Zoo DATA: Comparing of ROC graphs of 6 Machine Learning Algorithms





| XGBoos   | t - Parameters     | <b>Random Forest - Parameters</b> |            |  |
|----------|--------------------|-----------------------------------|------------|--|
| Feature  | Feature Importance |                                   | Importance |  |
| Re       | 0.310302           | Re                                | 0.245362   |  |
| ui       | 0.168082           | ba                                | 0.213058   |  |
| ba       | 0.144646           | sersic_r                          | 0.118683   |  |
| Cl       | 0.089578           | ui                                | 0.117339   |  |
| sersic_r | 0.089413           | gr                                | 0.091458   |  |
| gi       | 0.079507           | CI                                | 0.082964   |  |
| gr       | 0.079207           | gi                                | 0.080279   |  |
| absmagR  | 0.039266           | absmagR                           | 0.050857   |  |

#### 4 structural

| XGBoost - Parameters |            |  |
|----------------------|------------|--|
| Feature              | Importance |  |
| Re                   | 0.484281   |  |
| ba                   | 0.200457   |  |
| sersic_r             | 0.163282   |  |
| CI                   | 0.151981   |  |

#### 4 photometric

| XGBoost - Parameters |            |  |
|----------------------|------------|--|
| Feature              | Importance |  |
| ui                   | 0.346192   |  |
| gr                   | 0.255196   |  |
| gi                   | 0.226703   |  |
| absmagR              | 0.171909   |  |

## Own Zoo – Accuracy distribution as a function of redshift



#### Own Zoo Data: Recalls and Precisions as a function of redshift



AIA2019, July, 22-26

22/24

### Accuracy distribution as a function of redshift



#### Own Zoo Data 0 < z < 0.5

## Conclusions

- All 6 ML algorithms give almost the same results with 8 parametric features.
- The best accuray scores are obtained from RF and XGBoost algorithms in two different data.
- The photometric parameters are less effective than structural parameters.
- To select of the parametric features is crucial than the ML algorithms itself and play very important role in the scores of accuracy.
- The accuracy is slightly decreasing with higher redshifts.
- After a certain redshift human eye won't be able to distinguish galaxy classes.
- More classes of morphological types means less accuracy performances.
- Future Work:
  - To extend visually classified sample and test the algorithms.
  - To choose a robust and effective parameters by using the PCA or features selection algorithms!
  - To apply the algorithms to the higher redshifted CFHLTS-W1 field galaxy sample with sersic indices.