Painting with baryons Augmenting N-body simulations with gas using deep generative models

Tilman Tröster ttr@roe.ac.uk github.com/tilmantroester

Institute for Astronomy, University of Edinburgh

AIA 2019, Garching, 26 July 2019

Gravitational lensing

Gravitational lensing probes the clustering of matter

- ~80% of matter is dark matter
- ~20% is baryons
- Baryons are complicated!

Effect of baryons on the matter power spectrum

Huang+ 2018

Thermal Sunyaev-Zel'dovich (tSZ) Effect

Cross-correlate tSZ with lensing (Planck x KiDS-1000)

Challenge: Covariance matrices

Use simulations

- Need O(10³) hydrodynamical simulations for tSZ+lensing
 - Expensive (~10⁵ CPU hours)
 - Dark matter-only simulations are cheap (in comparison)

Why are hydro sims hard?

Feedback couples large and small scales

- Simulating large and small scales at the same time is hard
- But we don't care about the small scales

Use machine learning?

Dark Matter

Gas Temperature

Classification

Generative model: reverse classification

Output Input "cat"

Karras+ 2019

Kingma+2018

Generative models

Variational auto-encoder (VAE)

- Easy to train
- Can predict variance of output

Generative adversarial network (GAN)

- Tends to give better results
- Training is more challenging; often unstable

Conditional Variational Auto-Encoder (CVAE)

Basic problem: given dark matter, sample pressure

- x is pressure, y is dark matter
 - $x \sim p(x|y)$

Introduce latent variable z

•
$$p(x|y) = \int \mathrm{d}z \ p(x,z|y) = \int \mathrm{d}z \ p(x|y,z)p(z|y)$$

• Infinite mixture model

Conditional Variational Auto-Encoder (CVAE)

Parameterize as multivariate Gaussians

- Generator network $p_{\theta_2}(x|y,z)$
- Prior network $p_{\theta_1}(z|y)$
- Inference network $q_{\phi}(z|x,y)$

Variational lower bound

 $\log p(x|y) \ge -\mathbb{D}_{\mathrm{KL}}(q_{\phi}(z|x,y)||p_{\theta_{1}}(z|y)) + \mathbb{E}_{z \sim q_{\phi}(z|x,y)}[\log p_{\theta_{2}}(x|y,z)]$ $\mathsf{KL}\text{-term} \qquad \mathsf{Reconstruction}$

Conditional Variational Auto-Encoder (CVAE)

Results

Results

Cross-power spectra

Tröster+2019

Convergence vs Compton-y

Convergence κ , KiDS-450 n(z)

Compton y

tSZ-shear cross spectra

Where to go from here

Physicality

 Use physical models where they exists; replace effective models and approximations

Exploit locality and symmetries

Generating training data is expensive; increasing sample efficiency is key

Data representation

• Space is mostly empty. Grids are inefficient at representing cosmic fields; we need to move on from simple convolutional layers.

Thank you.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 797794