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Gravitational lensing

Gravitational lensing probes the clustering of matter 

• ~80% of matter is dark matter 
• ~20% is baryons 
• Baryons are complicated!



Effect of baryons on the matter power spectrum
Baryonic physics mitigation for lensing 5
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Figure 1. The ratios of the matter power spectra in di↵erent hy-
drodynamical simulations with respect to their counterpart DMO
simulations at z = 0. The thick lines show results for the Eagle,
MB2 and Illustris simulations, while the thin lines indicate the 9
di↵erent baryonic scenarios in OWLS simulation suite. The gray
vertical line separates between regions where the data points come
from direct measurement (k . 30 h�1Mpc) and from extrapolation
with a quadratic spline fit (k & 30 h�1Mpc; see Appendix B for
further details).

ing power spectra show significant di↵erences. The feedback
mechanism in Illustris drastically suppresses the power by
35% at k ⇡ 5 h

�1Mpc. Eagle reaches its maximum suppres-
sion of power of 20% at k ⇡ 20 h

�1Mpc. A similar trend is
also observed in Horizon-AGN, but it reaches its minimum
amplitude reduction of 10% at k ⇡ 10 h

�1Mpc. Going to-
wards higher k, we start to see that the ratio curves bend
upward and keep increasing beyond k of 30 h

�1Mpc. The
MB2 power spectrum behaves relatively similar to DMO,
but still the baryonic prescription prevents the power spec-
trum ratio from growing too quickly compared to the OWLS
scenarios without AGN feedback, which su↵er from severe
overcooling e↵ect.

The input cosmologies (pco,sim) for the five simulation
suits are di↵erent. In order to predict matter power spectra
with baryonic e↵ects for arbitrary cosmological parameters,
we take the power spectrum ratios shown Fig. 1 and apply
the following equation:

P
hydro
� (k, z | pco) =

P
hydro,sim
� (k, z | pco,sim)

P
DMO,sim
� (k, z | pco,sim)

P
theory
� (k, z | pco) ,

(1)

where P
hydro,sim
� (k, z | pco,sim) denotes the hydrodynamical

run from a given simulation; P
DMO,sim
� (k, z | pco,sim) is the

corresponding DMO run; P
theory
� (k, z | pco) is the theoretical

power spectrum calculated from Halofit (Takahashi et al.

2012) or HMcode (Mead et al. 2015), which are calibrated
by DMO simulations.

Eq. (1) illustrates an important assumption in this
work: we assume that baryonic e↵ects on the power spec-
trum can be represented as a fractional change in the power
spectrum, and that this fractional change is independent of
cosmology. The cosmology enters our analysis only through

the theoretical power spectrum P
theory
� (k, z | pco). In reality,

the baryonic and cosmological e↵ects may couple in a com-
plex way a↵ecting the growth of cosmic structure.

3 LIKELIHOOD ANALYSIS METHODOLOGY

Here we present our methodology in estimating the cosmo-
logical constraining power for an LSST-like survey. We start
by describing the theoretical models used in the work, our
mock observations, the covariance matrix constructed for an
LSST-like survey, and finally the likelihood formalism used
in estimating the posterior distribution of cosmological pa-
rameters. The cosmological model considered in our likeli-
hood simulation is flat wCDM, with varying cosmological
parameters pco = {⌦m, �8, ⌦b, ns, w0, wa, h}.

3.1 Theoretical Models

We rely on two main theoretical models to fit our mock
observables in this work. The first one is the Takahashi
et al. (2012) version of Halofit. It adopts empirically-
motivated functional forms to characterize the variation of
power spectra with cosmology. Having been calibrated with
high-resolution N-body simulations, it provides an accurate
prediction of the nonlinear matter spectrum with 5% preci-
sion at k  1 h

�1Mpc and 10% at 1  k  30 h
�1Mpc within

the redshift range of 0  z  10.
The second fitting routine is HMcode, constructed by

M15. It utilizes the halo-model formalism to describe the
cosmological change of power spectra via physically moti-
vated parameters. HMcode has prescriptions for capturing
the impact of baryons on the matter power spectrum via two
free parameters: the amplitude of the concentration-mass re-
lation (A; see Eq. (14) in M15), and a halo bloating param-
eter (⌘0; see Eqs. (26), (29) in M15) controlling the change
of dark matter halo profiles in a halo mass-dependent way
to account for di↵erent feedback energy levels. When al-
lowing A and ⌘0 to vary, it can successfully fit the power
spectra from various baryonic scenarios of OWLS (M15).
When fixing A = 3.13 and ⌘0 = 0.6044, HMcode functions
as a regular DMO-based emulator, which is calibrated with
high-resolution N-body simulations to an accuracy of ⇡ 5%
at k  10 h

�1Mpc for z  2. We note that the ⇡ 5% discrep-
ancy between the DMO mode of HMcode and Halofit

is non-negligible within LSST statistics. We therefore con-
struct two sets of mock observables based on each theoretical
model.

3.2 Mock Observational Data

We rely on four hydrodynamical simulations: Eagle, MB2,
Illustris and Horizon-AGN to study the bias in cosmological
parameters when analyzing weak lensing data while ignor-
ing baryonic e↵ects. Assuming that we were living in these
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Thermal Sunyaev-Zel’dovich (tSZ) Effect

Hot gas

CMB

Observer



Cross-correlate tSZ with lensing  
(Planck x KiDS-1000)

Preliminary!



Challenge: Covariance matrices

Use simulations

• Need O(103) hydrodynamical simulations for tSZ+lensing 

• Expensive (~105 CPU hours) 
• Dark matter-only simulations are cheap (in comparison) 



Why are hydro sims hard?

Feedback couples large and small scales

• Simulating large and small scales at the same time is hard 
• But we don’t care about the small scales



Use machine learning?

Vogelsberger+2004



Classification

Input

“cat”

Output



Generative model: reverse classification

Output

“cat”

Input



Karras+2018



Figure 2. Uncurated set of images produced by our style-based
generator (config F) with the FFHQ dataset. Here we used a vari-
ation of the truncation trick [5, 29] with  = 0.7 for resolutions
42 � 322. Please see the accompanying video for more results.

configurations B–F. We found these choices to give the best
results. Our contributions do not modify the loss function.

We observe that the style-based generator (E) improves
FIDs quite significantly over the traditional generator (B),
almost 20%, corroborating the large-scale ImageNet mea-
surements made in parallel work [6, 5]. Figure 2 shows
an uncurated set of novel images generated from the FFHQ
dataset using our generator. As confirmed by the FIDs, the
average quality is high, and even accessories such as eye-
glasses and hats get successfully synthesized. For this fig-
ure, we avoided sampling from the extreme regions of W
using the so-called truncation trick [5, 29] — Appendix B
details how the trick can be performed in W instead of Z .
Note that our generator allows applying the truncation se-
lectively to low resolutions only, so that high-resolution de-
tails are not affected.

All FIDs in this paper are computed without the trun-
cation trick, and we only use it for illustrative purposes in
Figure 2 and the video. All images are generated in 1024

2

resolution.

2.2. Prior art
Much of the work on GAN architectures has focused on

improving the discriminator by, e.g., using multiple dis-
criminators [15, 40], multiresolution discrimination [52,
48], or self-attention [55]. The work on generator side has
mostly focused on the exact distribution in the input latent
space [5] or shaping the input latent space via Gaussian
mixture models [4], clustering [41], or encouraging convex-
ity [45].

Recent conditional generators feed the class identifier
through a separate embedding network to a large number
of layers in the generator [39], while the latent is still pro-
vided though the input layer. A few authors have considered
feeding parts of the latent code to multiple generator layers
[9, 5]. In parallel work, Chen et al. [6] “self modulate” the
generator using AdaINs, similarly to our work, but do not
consider an intermediate latent space or noise inputs.

3. Properties of the style-based generator
Our generator architecture makes it possible to control

the image synthesis via scale-specific modifications to the
styles. We can view the mapping network and affine trans-
formations as a way to draw samples for each style from a
learned distribution, and the synthesis network as a way to
generate a novel image based on a collection of styles. The
effects of each style are localized in the network, i.e., modi-
fying a specific subset of the styles can be expected to affect
only certain aspects of the image.

To see the reason for this localization, let us consider
how the AdaIN operation (Eq. 1) first normalizes each chan-
nel to zero mean and unit variance, and only then applies
scales and biases based on the style. The new per-channel
statistics, as dictated by the style, modify the relative impor-
tance of features for the subsequent convolution operation,
but they do not depend on the original statistics because of
the normalization. Thus each style controls only one convo-
lution before being overridden by the next AdaIN operation.

3.1. Style mixing
To further encourage the styles to localize, we employ

mixing regularization, where a given percentage of images
are generated using two random latent codes instead of one
during training. When generating such an image, we sim-
ply switch from one latent code to another — an operation
we refer to as style mixing — at a randomly selected point
in the synthesis network. To be specific, we run two latent
codes z1, z2 through the mapping network, and have the
corresponding w1,w2 control the styles so that w1 applies
before the crossover point and w2 after it. This regular-
ization technique prevents the network from assuming that
adjacent styles are correlated.

Table 2 shows how enabling mixing regularization dur-

3
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Generative models

Variational auto-encoder (VAE)

• Easy to train 
• Can predict variance of output 

Generative adversarial network (GAN)

• Tends to give better results 
• Training is more challenging; often unstable



Conditional Variational Auto-Encoder (CVAE)

Basic problem: given dark matter, sample pressure

•  x is pressure, y is dark matter 

•   

Introduce latent variable z

•   
•  Infinite mixture model

x ⇠ p(x|y)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

p(x|y) =
Z

dz p(x, z|y) =
Z

dz p(x|y, z)p(z|y)
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Conditional Variational Auto-Encoder (CVAE)

Parameterize as multivariate Gaussians

•  Generator network 
•  Prior network 
•  Inference network 

Variational lower bound

q�(z|x, y)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

KL-term Reconstruction 

log p(x|y) � �DKL(q�(z|x, y)||p✓1(z|y)) + Ez⇠q�(z|x,y)[log p✓2(x|y, z)]
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Conditional Variational Auto-Encoder (CVAE)

Inference network

q�(z|x, y)
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Generator network

x0 ⇠ p✓(x|y, z)
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Results

Pressure PressureDark matterPressure (fake) Pressure (truth)Dark matter (input)
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Cross-power spectra
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Convergence vs Compton-y



tSZ-shear cross spectra
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Where to go from here

Physicality

• Use physical models where they exists; replace effective models and 

approximations 

Exploit locality and symmetries

• Generating training data is expensive; increasing sample efficiency is 

key 

Data representation

• Space is mostly empty. Grids are inefficient at representing cosmic 

fields; we need to move on from simple convolutional layers.



Thank you.
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