Machine learning techniques to classify transients using LSST: a proof of concept using MeerLICHT

> JP Marais^{*} Supervisors: Brian van Soelen, David Buckley

University of the Free State, South Africa

Outline

- Assorted ML classifiers
 - Naive Bayes
 - Support Vector Machines
 - Random Forests
 - Neural Networks
- LSST / VRST
 - Design
 - Data Reduction/Analysis
 - Expected results

- MeerLICHT
 - Design
 - Data Reduction/Analysis
- Convolutional Neural Network
 - Goals
 - Current design
 - Eventual design
 - Preliminary results
- Conclusion

Naive Bayes

• Advantages

MAMA

• Independent features

INSECTS

- 1D kernel density estimation
- Fast training/classification
- Suited for high dimensionality
- Not sensitive to irrelevant featuresHighly scalable

BIRD

- Disadvantages
 - Assumes independency of all variables
 - \circ cannot learn interactions between variables
 - Imbalanced classes equals skewed results
 - Data scarcity

Support Vector Machines

- Non-probabilistic classifier
- Optimal hyperplane
- Separable in higher dimensions
- Unique solutions
- Difficult to represent class scores

Random Forests

- Decision trees
 - Binary decisions
 - Random features
 - Stop: single class

- Random Forests
 - Bagging classifier
 - Multiple trees
 - Increase stats
 - Highly scalable

Neural Networks

- Inspiration from brain
- Very good at pattern recognition
- Large number of inputs
- High accuracy

Argonne PR 13/09/2018

٠.

Xn1 Xn2

Neural Networks

- Inspiration from brain \bullet
- Very good at pattern recognition
- Large number of inputs
- High accuracy

Wang et al. 2018

Large Synoptic Survey Telescope

Large Synoptic Survey Telescope (LSST) Vera Rubin Survey Telescope (VRST)

Design

- Cerro Pachón, Chile
- 8.4-m mirror
- 3 mirror design
- FoV: 9.6 deg²
- 3.2 Gigapixel CCD
- *ugrizy* filters

LSST Gallery

Large Synoptic Survey Telescope (LSST) Vera Rubin Survey Telescope (VRST)

Design

- Cerro Pachón, Chile
- 8.4-m mirror
- 3 mirror design
- FoV: 9.6 deg²
- 3.2 Gigapixel CCD
- *ugrizy* filters

LSST Gallery

Large Synoptic Survey Telescope (LSST) Reduction/Analysis

Prompt

Data Release

- DIA
- Source detection
- Alerts
- Public

Daily

- 30 day LC
- Moving object

- Yearly data release
- DIA rerun on all data
- Stacked CoAdds created
- Source detection, association and characterization
- Forced photometry for all objects

Large Synoptic Survey Telescope (LSST) Expected Results

- 18000 deg² survey area
- Single-visit exposure: 30s (2x15s)
- Single-visit depth : 25.0 (g)

- 37 Billion stars and Galaxies
- 10 million alerts/night
- 15 Terabytes/night

LSST Gallery

MeerLICHT

A slave to MeerKAT

Design

- Located in Sutherland, South Africa
- Real-time optical view of radio sky
- 0.65-m Robotic telescope
- FoV: 2.7 deg² (same as MeerKAT)
- 100 Megapixel, singe CCD
- Filters: ugriz + q
- Cadence: 1 min (q, u, q, g, q, r, q, i, q, z, ...)

MeerLICHT

A slave to MeerKAT

Design

- Located in Sutherland, South Africa
- Real-time optical view of radio sky
- 0.65-m Robotic telescope
- FoV: 2.7 deg² (same as MeerKAT)
- 100 Megapixel, singe CCD
- Filters: ugriz + q
- Cadence: 1 min (q, u, q, g, q, r, q, i, q, z, ...)

Bloemen et al 2016

MeerLICHT A slave to MeerKAT

Data Analysis

- Day mode
 - \circ Master calibration files
 - Reduce all data
- Night mode
 - Transient detection
 - Real-time alerts
 - VOEvents

Data Analysis

- DIA alerts
- ZOGY (Zackey et al 2016)
 - Performs image subtraction
 - Significance image
 - PSF photometry image
- Optimal photometry
 - Speed of aperture photometry
 - Accuracy of PSF photometry

MeerLICHT

Small Magellanic Cloud

u, g, r, i, z Composite

CNN to detect novel transients

CNN to detect novel transients

- Step 1: Classify
 - Variables
 - Transients
- Step 2: Predict
 - Next observation
 - $\circ \qquad {\sf Next\,few\,observations}$
- Step 3: Construct
 - Autoencode features
 - Reconstruct simple LC
- Step 4: Alert
 - Compare prediction to encoded LC
 - Alert for significant deviation

CNN to detect novel transients Current Design + Initial Results

- Optimizer: Stochastic Gradient Descent
- Learning rate: 0.005
- Activation: ReLu

CNN to detect novel transients Current Design + Initial Results

- Optimizer: Stochastic Gradient Descent
- Learning rate: 0.005
- Activation: ReLu

CNN to detect interesting transients Future Design

- Classifier
 - Newly detected sources
- Autoencoder
 - Reconstruct general LC for class
- LSTM Sequence prediction
 - Predict next points in sequence
- Compare LSTM and Autoencoder
 - Is source variable
 - False alarm

Conclusion

• LSST

- Terabytes of data/night
- Millions of alerts
- Operation start: 2022
- MeerLICHT
 - Slaved to MeerKAT
 - Simultaneous radio + optical
 - Ideal to test ML techniques

- Simple CNN
 - Good accuracy
 - Random training data
 - Unstable learning rate
- Future
 - CNN capable of predictions
 - General LC
 - Classify new sources

Thank You

