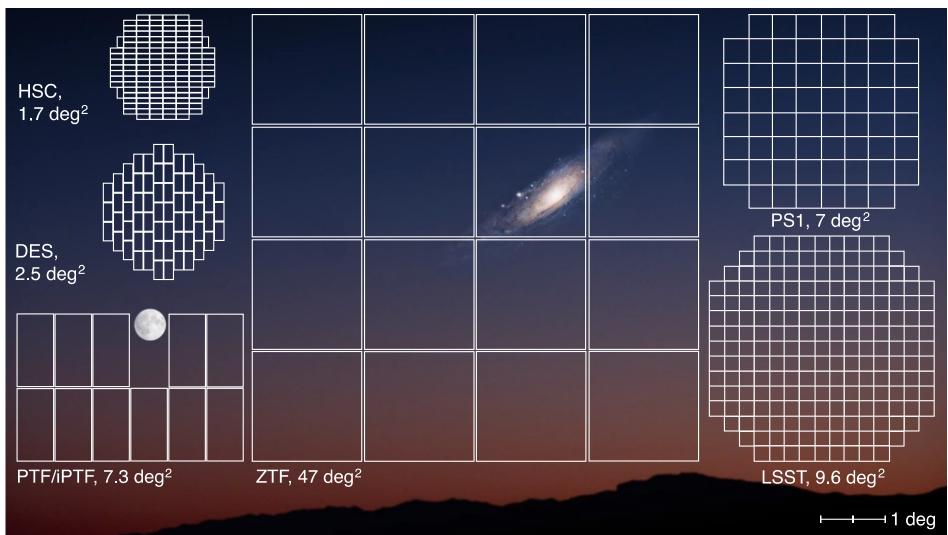
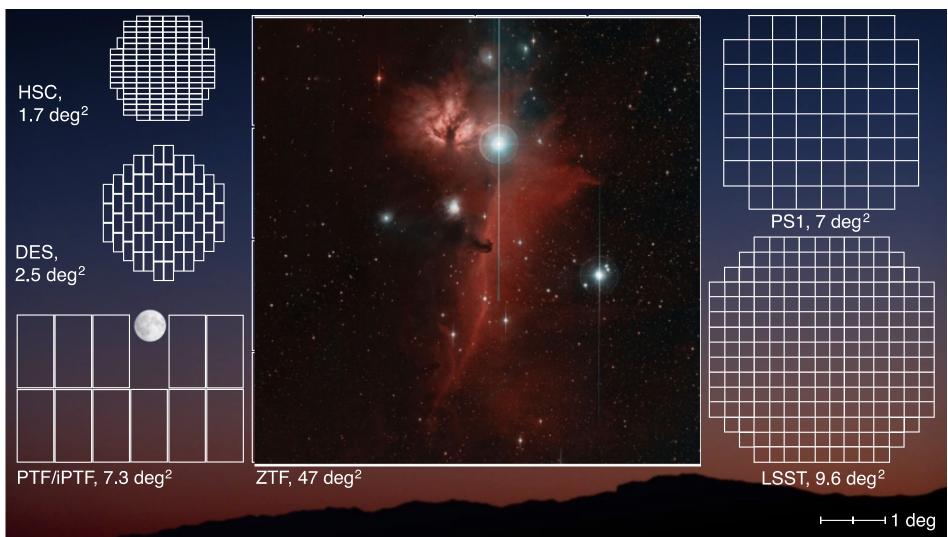


Ulrich Feindt

The Oskar Klein Centre Stockholm University



Craw Klein Zwicky Transient Facility (ZTF)



ZTF FoV compared to other surveys

Cokar Klein First light: November 15, 2017

Partnership organized in Science Working Groups

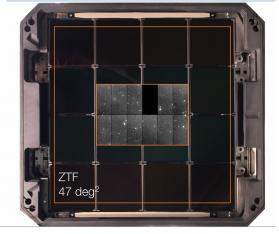
- Multi-messenger astronomy: EM counterparts of GW, gamma rays and neutrino sources
- AGN & TDEs
- Cosmology with supernovae and gravitational lensing
- Physics of supernovae and relativistic explosions
- Solar System Bodies
- Stellar Science

ZTF Survey Plan

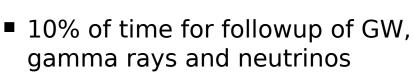
- ZTF P48 time shared between "partnership" (10 institutions), NSF public survey ("MSIP") and Caltech private time (40%, 40%, 20%). Funded for 3 years
- ZTF P60 Spectroscopic time 65/35% split partnership/Caltech
- MSIP year 1: a "mini LSST" g,r survey of all Northern sky every 3 nights, including sweep of Galactic plane
- Partnership year 1: High-cadence observations of 1/10 of the Northern extragalactic sky, 5-6 visits/night + i-band survey with 4day cadence of ½ sky, 9 months
- Dedicated inner Galactic plane continuous monitoring for 2 summer weeks
- Solar System Science program for ~1 month

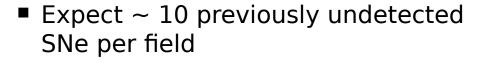
Expected *Yearly* yield of spectroscopically identified SN

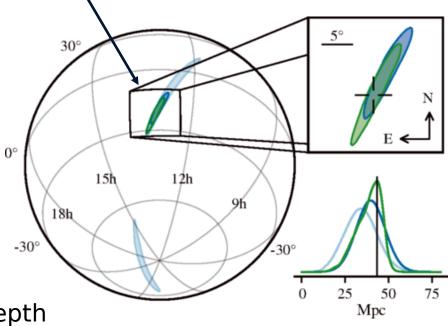
Transients with g < 18.5 mag will be classified using the SEDmachine on P60


SN Type	SNe in 12 months	Median redshift	
la	1000	0.053	
Ibc	220	0.048	
IIP/L	375	0.028	
IIn	120	0.049	
Total CC	715		

Numbers from lightcurve simulations (Feindt et al. in prep.)


However, only a few GW170817-like events are expected to be detected by chance


ZTF ToO observations



Localization of GW170817 was smaller than ZTF FoV

■ ToO observations will be longer exposures (up to 10 min) to a depth of ~ 22 mag (normally 20.5 mag)

Abbot et al. (2017), PRL 119, 161101

Tools to manage > O(105) optical transients

GW170817 nearby and with good locatlization – will not always be the case

AMPEL framework developed at HU Berlin to:

- Reject previously existing transients
- Match galaxies of new transients with catalogs and determine photo-z for others
- Automatic trigger of notices and follow-up observations
- Could be used to combine data from different sources connected to TNS and not tied to ZTF

Rapid Followup: GROWTH

Summary & Conclusions

- ZTF is a new exciting discovery engine, 12 times faster than its precursor (PTF/iPTF). Three filters (gri), iPTF was single band
- Large FoV allows covering GW localizations with only a few pointings
- Robotic spectroscopic follow-up of g < 18.5 mag transients, fainter targets need bigger telescopes
- New approaches needed for handling high-rates of transients. ZTF is a stepping stone for LSST.
- Survey starts in second half of February. Fingers crossed!

Extra slides

ZTF vs. (i)PTF

	PTF	ZTF	
Active Area	7.26 deg ²	47 deg ²	
Overhead Time	46 sec	<15 sec	
Optimal Exposure Time	60 sec	30 sec	
Relative Areal Survey Rate	1x	14.7x	
Relative Volumetric Survey Rate	1x	12.3x	

3750 deg²/hour

→3π survey in 8 hours >250 observation/field/year for uniform survey

Will observe thousands of SNe X X New ZTF camera: 16 6k x 6k e2v CCDs MOSAIC 12k

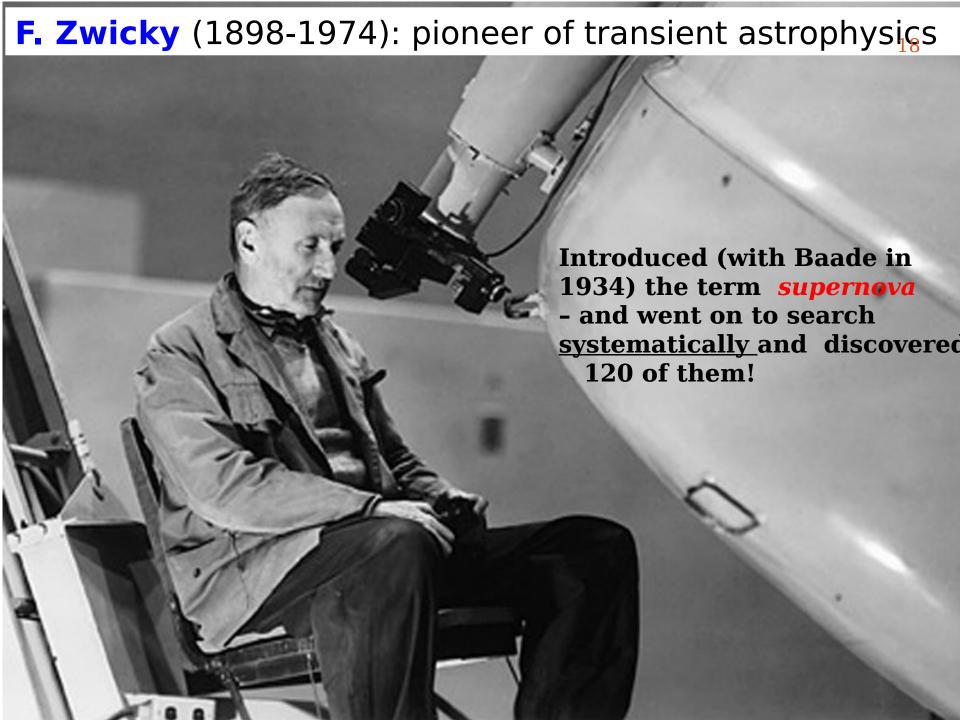

"Blind searches" (no GW trigger)

TABLE 2
EXPECTED NUMBER OF KNE FOUND IN EACH SAMPLE.

			Survey	KN Redshift
No detections expected in past surveys	Survey	# KNe ^a	Years	Range
	SDSS	0.13	2	0.02 - 0.05
	SNLS	0.11	4	0.05 - 0.20
	PS1	0.22	4	0.03 - 0.11
	DES	0.26	5	0.05 - 0.20
	ASAS-SN	< 0.001	3	_
	SMT	0.001	5	0.01 - 0.01
	ATLAS	8.3	5	0.01 - 0.03
	ZTF	10.6	5	0.01 - 0.04
	LSST WFD	69	10	0.02 - 0.25
	LSST DDF	5.5	10	0.05 - 0.25
	WFIRST	16.0	2	0.1 - 0.8

^aTotal for entire duration of survey.

Scolnic et al, arXiv:1710.05845

P48 (Samuel Oschin Telescope) 9

P48 (Samuel Oschin Telescope)⁶⁰

