

Outline

Gamma Ray Telescopes for GW Transients 🛠 Fermi-GBM **Challenges in Data Analysis** ☆ Backgrounds **A** Responses ☆ Analysis Approaches/Alternatives **Characteristics of Observations** and of Constraints from Gamma-Rays ☆ Transient Detection Intensity Constraints ☆ Timing Constraints ☆ Spectral Constraints

Fermi-GBM γ-ray measurements of GRB 170817A

GRB 170817A: a ~normal/common short GRB trigger

GRB 170817A also seen with SPI/ACS!

The Gamma-Ray Burst Monitor (GBM) on the FERMI Mission

Germany (MPE, Jena-Optronik) and U.S. (NASA/MSFC)

- 12 Sodium Iodide NaI(TL) scintillation detectors
 - ☆ Wide Field of View
 - 🛠 🛛 Burst Trigger
 - ☆ Cover typical GRB spectrum: 8 1000 keV
- 2 Bismuth Germanate (BGO) scintillation detectors
 - ☆ Energy range: 150 keV-40 MeV
 - \star Spectral overlap with Nal and LAT
- 1 Power Box (PB)
- 1 Digital Processing Unit (DPU)

47

Data from Fermi/GBM

typically dominated by background from cosmic-ray activations

One day of data:

Fermi-GBM γ -ray measurements of GRB 170817A

GRB 170817A: a ~normal/common short GRB trigger

'ESO obs planning of future GW events', Jan 31/Feb 1, 2018

MP

'ESO obs planning of future GW events', Jan 31/Feb 1, 2018

Timing GRB 170817A

Spectra with GBM

Limitations from spectral resolution of scintillation detectors ~10% ☆ Background dominates total countrates (→ no 'subtraction' allowed)

☆ Spectral response and background systematics impose limitations

ТШ Fermi-GBM γ-ray measurements of GRB 170817A MP MU GRB 170817A: a ~normal/common short GRB trigger Goldstein et al. 2017 1500 GBM Nal's BGO_00 + Rate (counts s⁻¹ keV⁻¹) NAI_01 O 50-300 keV NAI_02 □ NAI_05 ◊ 1400 1.00 1300 Second 1200 Second 0.10 main pulse 0.01

Roland Diehl

Spectral Constraints: GW170817/GRB170817A

'ESO obs planning of future GW events', Jan 31/Feb 1, 2018

MP

INTEGRAL's most-sensitive GW γ -ray Instrument

The SPI-AntiCoincidenceSystem (ACS) [©] 500 kg (world-largest) BGO scintillation detector, 91 modules rate sampling at 50 ms intervals ^C used for CR bgd event suppression 2017-09-06T00:45:00 a solar flare BGO-7911. crystals of LCR 7476. Gecount camera BGO-6616. crystals Revolution 1000 500 1500 100 s 1.2×10 (CSRate (cts/s) PSAC 1.0×10⁵ 8.0×10 6.0×1 4 0×10 2000 3000 4000 5000 6000 IJD Camera

'ESO obs planning of future GW events', Jan 31/Feb 1, 2018

MP

Data from INTEGRAL: LVT151012

INTEGRAL's spatial information on gamma rays

MP

'ESO obs planning of future GW events', Jan 31/Feb 1, 2018

Dependence on adopted spectral model: 1s GRB from LVT151012

☆ Comptonised

🖈 Band fct

Response of GBM Detectors

• Effective sensitivity versus incidence angle:

Nal's (~slice of scintillator) directional, especially at low energy BGO 'blocks': all-sky

Fig. 26 Off–axis effective area as a function of the irradiation angle (from -90° to 270°) for NaI FM 04 (*left panel*) and BGO EQM (*right panel*). In the case of NaI, results for three radioactive lines are shown, namely: Different curves represent different NaI line–energies: 32.06 keV from ¹³⁷Cs (*top green curve*), 279.2 keV from ²⁰³Hg (*middle red curve*), and 661.66 keV from ¹³⁷Cs (*bottom yellow curve*). For BGO, two lines from ⁸⁸Y are shown: 898.04 keV (*blue curve*) and 1836.06 keV (*red curve*).

Locating Gamma Ray Burst Sources with GBM

Exploiting Count Rate Differences Among Detectors:

(Connaughton+2015; Burgess+2018)

- Shadowing and aspect angle sensitivity provide individual detector responses for the 12 Nal's
- Earth albedo & scattering needs to be accounted for
- Monte-Carlo simulated responses have been assembled for ~100 sky directions
- a "best-fitting" direction thus can be evaluated
- Checking in hindsight (from afterglows, host galaxies), an offset of 8-13 degrees shows the limitations
- A finer (unbinned) sky direction treatment and inclusion of spectral properties in a Bayesian framework reduces systematics → locations within ~5 degrees achieved

Fermi-GBM γ -ray measurements of GRB 170817A

GRB 170817A, as compared to "typical short GRBs":

'ESO obs planning of future GW events', Jan 31/Feb 1, 2018

MP

Similar short GRBs

- at least one other good candidate for nearby low-L GRB
- in total ~10 out of 50 short GRBs have similar spectral properties, and thus could be local and off-axis

Models for prompt gamma-ray emission

Standard model:

Synchrotron emission from the electrons that were Fermi-accelerated in these internal shocks

(but not undisputed: main problem is the necessary high efficiency)

Alternative models

- Photospheric emission: sub-photospheric heating leads to broadening of Planck spectrum
- Magnetically dominated jet: magnetic reconnection leads to broad-band spectrum

Post-merger dynamics

disruption of less-massive neutron star \rightarrow ejection, nuclear reactions

Fernández & Metzger 2016 from Rezolla+ 2011, and Fouchart+ 2014

Candidate r-process sources

- ☆ Need neutron-rich nuclear plasma (free nucleons)
- ☆ Explosive environment
 - Supernova explosions; regions near proto-neutron star (v-driven wind)
 - \bigcirc Neutron star's violent interactions (\rightarrow ejected material??)
- \Rightarrow Y_e (neutron richness of nucleon ensemble) is a key parameter
- * Nuclear fission (cycling) may regulate towards a homogeneous outcome

The scientific question "origin of the r process"

- Solar-system elemental abundances of heavy elements originate from the r-, s- and p- processes
- The s process is "known" and can be subtracted
- The remaining r process pattern is due to well-regulated astrophysical and nuclear processes → the quest
 'ESO obs planning of future GW events', Jan 31/Feb 1, 2018

r process nuclear reaction dynamics

Nuclear processing of NS merger material

neutron capture in an r-process near colliding neutron stars

Electron fraction is most critical, otherwise well regulated

Wu, Fernández, Martinez-Pinedo, & Metzger 2015

Nucleosynthesis from a NSM

Emergent Radiation: Opacities

Figure 2. Graphical sketch of the three ejecta components radially expanding from the remnant. Different colors correspond to different matter opacity: high (red), intermediate (orange), low (blue).

Perego+2017

Nuclei (=isotopes!) reveal nucleosynthesis by their decays.

Indirectly, the radioactive decay produces hot envelopes, and radioactive afterglows.

SPI Ge γ-ray Spectrometer on INTEGRAL satellite

Coded-Mask Telescope w Ge Detectors Energy Range 15-8000 keV Energy Resolution ~2.2 keV @ 662 keV Spatial Precision 2.6° / ~2 arcmin Field-of-View 16x16°

large BGO detector used as CR AntiCoincidence E >75 keV, A_{eff} ~0.7 m² omnidirectional gamma-ray transients detector

SN2014J data Jan – Jun 2014: ⁵⁶Co lines

☆ Doppler broadened ✓

- ☆ Coarse & fine spectral binning
- → Observe a structured and evolving spectrum
- expected:
 gradual appearance
 of broadened ⁵⁶Co lines
 ^{CP} Diehl et al., A&A (2015)
- How an envelope becomes transparent after an explosion

Gamma rays from NSM r-process radioactivities

Superposition of many radioactive species

...we know gamma-ray lines from radioactivity:

^{&#}x27;ESO obs planning of future GW events', Jan Styrev 1, 2010

Radioactivity powers electromagnetic afterglow

- ☆ nuclear burning → heating of an envelope → 'macronova'
- ☆ probably related to r process (so: observationally-confirmed source)
 - ^{ce} we still do not know which objects contribute how much to trans-Fe element synthesis

☆ too faint to use characteristic gamma-ray lines as unique diagnostic

Perspectives: New/better observations?

ТШ