

Lab

CI

Center

Fight

Space

Goddard

NASA

Credit:

Image

UNIVERSITE LA BORATOIRE DE L'ACCELERATEUR LINEAIRE UNIVERSITE PARIS SU PARIS SU

GW170817: OBSERVATION OF GRAVITATIONAL WAVES FROM A BINARY NEUTRON STAR INSPIRAL

Sarah Antier On behalf on the LIGO-Virgo collaboration

2017, a golden year for GW astrophysics

- O2 run : from December 2016 to end of August 2017
- Virgo joined the run for several weeks
 - Allowed localization below 100 deg^2
- New announcements for BBHs
- A new type of source detected : GW170817
- Nobel Prize in physics

2

O2 EM follow-up campaign

• It started with the two LIGO detector only. Duty cycle ~ 50 %

• Send possible candidate with FAR < 1/2 months

- 95 MOUs with different institutions, agencies, groups of astronomers from more than 20 countries
- 88 operational facilities

August 2017, the 3-detector era begins

- Virgo joined August 1st 2017 for 25 days
- Duty cycle in triple coincidence $\sim 60 \%$
 - Livingston : 77.6 %
 - Hanford : 75.8 %
 - Virgo : 82.4 %
- Several alerts sent during that month

GW170814

Random chance to have signal in Virgo < 0.3 %

false alarm rate < 1 in140,000 years

O2 gravitational-waves detections

Abbott, Benjamin P.; et al. (LIGO Scientific Collaboration and Virgo Collaboration) (18 December 2017). "GW170608: Observation of a 19-solar-mass Binary Black Hole Coalescence". The Astrophysical Journal Letters

GW170817 discovery

- at 12:41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made the first ever observation of a binary neutron star inspiral
- SNR ~ 32.4,
- Probability that it was due to noise (False Alarm Rate, FAR): 1 in 80000 years

Maximum distance to detect a binary neutrons stars system (SNR>8) :

- Hanford
- Livingston
- Virgo

218 Mpc 58 Mpc

107 Mpc

Normalized amplitude 500 LIGO-Hanford 10050 500 LIGO-Livingston Frequency (Hz) 100 50 500 Virgo 10050

-20

-30

0

-10

Time (seconds)

GW170817 data cleaning done in 5 hours

- Initially identified by LIGO Hanford
- Instrumental noise transient in LIGO Livingston 1.1 s before the coalescence time
- Well-known "glitches" without temporal correlation between sites

- Glitch removal to establish coincidence
- No clear signal in Virgo

GW170817 and GRB170817

Extract source information from GWs

$h_{+}(t) = \frac{A[\mathcal{M} f(t)]}{\swarrow D} (1 + \cos^{2} \iota) \cos \Phi_{\mathrm{GW}}(t)$ distance inclination angle GW Phase	Model h(t) $\mathbf{f}_{for the set of the set $	
Drimony moss m.	Low-spin priors ($ \chi \le 0.05$)	High-spin priors $(\chi \le 0.89)$
Primary mass m_1	$1.30 - 1.00 M_{\odot}$	$1.30 - 2.20 M_{\odot}$
Secondary mass m_2	$1.17 - 1.36 M_{\odot}$	$0.86 - 1.36 M_{\odot}$
Chirp mass \mathcal{M}	$1.188^{+0.004}_{-0.002}M_{\odot}$	$1.188^{+0.004}_{-0.002}M_{\odot}$
Mass ratio m_2/m_1	0.7 - 1.0	0.4 - 1.0
Total mass $m_{\rm tot}$	$2.74^{+0.04}_{-0.01}{ m M}_{\odot}$	$2.82^{+0.47}_{-0.09}{ m M}_{\odot}$
Radiated energy $E_{\rm rad}$	$> 0.025 M_{\odot} c^2$	$> 0.025{\rm M}_{\odot}{\rm c}^2$
Luminosity distance $D_{\rm L}$	$40^{+8}_{-14}{\rm Mpc}$	$40^{+8}_{-14}{\rm Mpc}$
Misalignment of total angular momentum and line of sight	$\leq 56^{\circ}$	$\leq 55^{\circ}$
using counterpart location	$\leq 30^{\circ}$	$\leq 30^{\circ}$
Combined dimensionless tidal deformability $\tilde{\Lambda}$	≤ 800	≤ 700
Dimensionless tidal deformability $\Lambda(1.4M_{\odot})$	≤ 800	≤ 1400

GW170817: observation of gravitational waves from a binary neutron star inspiral, Abbot et al. 2017 ⁹

Equation of state (EOS)

• Signal observed favor EOS for compact NS

Key role of Virgo in GW170817 localization

GW170817 multi-messenger campaign

Credit: ESO/E Pian/S.Smartt eEPPESSTO/N Tanvir/VINROUGE

+9d

X-ray

counterpart

+16d Radio counterpart

Radio

Hubble constant measurement For closed-by source : v=H₀D

What happened after the merger?

- The newly formed black hole or neutron star (stable or unstable) will emit a distinct gravitational wave signature
- Too weak to be observed for this merger
 - Search for short (< 1s) / intermediate duration (< 500 s)
 - Can be BH or NS (long-lived or too massive for stability)
 - Post merger emission from similar event may be detectable when advanced detectors reach design sensitivy

« Search for Post-merger GW from the Remnant of the Binary Neutron Star Me GW170817, Astrophy J. Letter, 851, L16

The future multi-messenger area

In the PAST

• Relation between neutron star and GRBs Gravitational wave and Gamma-rays from binary neutron star merger sky: GW170817 and GRB170817A », Abbott et al., ApJ, 2017

- Production of heavy elements in kilonovae Partner Paper,s Arcavi et al. Soares-Santos et al. Cowperthwaite et al. Pian et al., Smartt et al 2017
- Electromagnetic emission related to compact merger/collapse events Partners Paper, Goldstein et al. Troja et al Alxander et al., Evans et al. ... 2017
- Equation of state of neutron stars
- Estimation of the compact object rate
- Cosmology (Hubble constant measurement)

A gravitational-wave standard siren measurement of the Hubble constant, Abbot et al, 201

BH-BH mergers

. . . .

NS-NS merger (GW170817: observation of gravitational waves from a binary neutron star inspiral, Abbot et al. 2017)

O1/O2 campaign

Populations studies Remanent studies Collapse of massive star Isolated neutrons star instabilities

In the future O3 and beyon

Further on GW170817 multi-messenger observations And LIGO/Virgo projects

Gamma-ray observations : Roland Diehl

X-ray observations: Maria Grazia Bernardini

Optical/Near-Infrared observations : Stephen Smartt

Virgo next science runs: Marica Branchesi

Credit: VLT/VIMOS, VLT/MUSE, MPG/ESO 2.2-m teles/GROND, VISTA/VIRCAM, VST.OmegaCam

Credit: ESO

