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Why model-independent imaging?

For targets with too complex structure, model fitting not useful
- a model with wrong geometry can fit well, even with moderate uv coverage
- the best-fit parameters are completely meaningless.

Imaging is often the only way to get insight in complex structures.

Images can be interpreted and analysed straight-forwardly by colleagues who are not familiar
with interferometry.

With images your results are better presented and improve funding prospects.
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Observed interferometric data Setant
Istan

source

Output of an interferometer: Wavefront/atmosphere

each baseline provides one complex visibility

I(f12(t)) = Ox(f12(1)) - exp (i1 (A, 1)) - exp (—ig2(A, 1))
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- projected baseline:  b;;(t) = 7, (t) — ;i (?) Delay
r; (t) = position of the i-th telescope projected on a plane perpendicular to the line of sight
- fi;(t) = b;;(t)/ X\ :spatial frequency

-Ox(fi;(t)) = angular Fourier transform of the observed object 0 (<) in angular direction &

- ¢i(A, t) = atmospherically distorted phase of the incoming wavefront and instrumental phase
at telescope i

wavelength
time
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Special case: Image reconstruction = deconvolution

- All measured complex visibilities O( f;;) cover a small fraction of the uv plane

nts *-* Stokes I"IF#41 Chan#T

- Use all measured complex visibilities to reconstruct an image:
this is a simple Fourier inversion

z(az) — O(fw) eXp (27’(‘ 1 fz’j X) df@]
fi; €M

the ,,dirty map" Z(:L‘) = 0(%) X p(:z;) is true object 0(:13)
convolved with the ,,dirty beam* p(;v) caused by the sparse uv cove
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Simon Garrington

the image looks bad because of the sparse uv coverage.
prior information about the object has to be applied to get correct images.

BUT, usually, we have no complex visibilities in optical long baseline interferometry !!
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Effects of the turbulent atmosphere:

- Due to the fast turbulent atmosphere, IR interferograms have to be recorded with short
exposure times of ~ 10 - 300 ms in order to ,,freeze the interferometric fringes™
containing the high-spatial frequency information, i.e. the object Fourier transform Ox(fi; (1)) .
The exposure time is similar to the time-interval in which the atmosphere stays constant,
the so called coherence time.

- The interferograms are degraded by photon- and detector-noise

VLTI/AMBER:

- 1 g B e g P R T S R S -:-'--. Ao 4 :

- ~| spectral channel per Fony
pixel column
- fringes visible
- detector noise visible
- IRAS 13481,K = , —
2.12 pm 2.46 pm

- Fringe contrast is the visibility |Ox(fi;(t))| of the Fourier transform O ( f;;(t))of the target
Fringe phase is the Fourier phase of Ox(fi;(t)) plus the unknown atmospheric phase



Effects of the turbulent atmosphere:

- power spectrum
< |I(f12)I? >m= [Oxr(f12)I?- < | exp (id1(A, 1)) - exp (—ida(A, 1))][* > 0

power spectrum is not sensitive to phase errors!
- bispectrum

<I(f12) I(f23) I(f31) >m= Ox(f12) Ox(f23) Ox(f31) X
X < exp (1[@1(A,t) — d2(A, ) + d2(A, 1) — @3(A, 1) + P3(A, ) — d1(A,)]) >m >0
bispectrum is not sensitive to phase errors!

with f12 + fo3 + f31 = 0 —— Ox(f12) Ox(f23) Or(f31) = Or(f12) Ox(f23) Or(—f12 — fo3)
= Ox(f12) Ox(f23) Ox(f12 + f23)
= O (f12, f23)

,,Closing Triangle*
1 for real objects: Ox(—f12) = O3 (f12) = Ox(f21)
Py = —Dyo
J12 /31 Closure Phase P93 := P15 + Po3 + Py
= sum of the object Fourier ph<
2 f23 3 Ox(f12) == Viz - exp (1 P12)
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Effects of the turbulent atmosphere:

BUT in special cases
- complex visibilities
can be measured in optical/infrared interferometry:

a) beam combiners providing spectral information like AMBER, GRAVITY & MATISSE
are able to measure wavelength-differential phases;
wavelength-differential phases are obtained after rough compensation of the
atmospheric phases;
from wave-length differential phases the absolute Fourier phases and complex
visibility can be derived
(as proposed by Millour and Petrov).

b) GRAVITY also measures complex visibilities through phase-referencing
(a close by star is used to determine the atmospheric phases of the target
which are compensated before averaging the interferograms).



Properties of the interferometric data:

- non-linear data
power spectrum ~ |I(f)[*
bispectrum ~ I(f1)I(f2) I"(f1+ f2)
- linear data
complex visibilities spatial frequency plane

© 1am0 = 1.67536 mu

- sparsity of the uv coverage of the data 80 -

N oo
o NENRY

holes in the uv plane

(typical for present optical/IR
interferometers due small number
of telescopes, ~3-6)

spatial frequency Y coordinate scaled by lamO [m]

-80 60 40 -20 0O 20 40 60 80
spatial frequency X coordinate scaled by lamO0 [m]

- Fourier phase information
power spectrum :  has no Fourier phase
bispectrum :  provides a sum of 3 Fourier phases, no single Fourier phases

complex visibilities:  all Fourier phases
9



Input data

- Squared visibilities (power spectra) and the closure phases (phase of the complex bispectrum)
- Some algorithms, e.g. IRBis, use the bispectrum O®)(f,,f,)  built by the measured

squared visibilities V*(f,) and the measured closure phases [(fy,f,) :
OB (£, £,) = O(fy) O(f,) O* (£, + £y)
=/ V2(£,) V2(£,) V2(f, + £y) exp {i B(fu, fv)}

q=f, 2D bispectrum
T from ID image
- bispectrum also contains the squared visibilities V2 (f,) I8 'Modutus | 022205 0 Op
on the three axis P '
. . . . \ l
in the bispectrum plane,e.g.if f, — () NERY o1t
N g ;J‘:_':_..
- bispectrum of 2-dimensional image is 4-dimensional AN 23R voduna P = fu
N
N
N

|
[~| O |2 Modulus

- the error of the bispectrum built is calculated from the errors of V*(f,) and 3(f,, f,)
- this bispectrum is not complete because of the sparsity of the uv coverage.



Constraints due to the measured data

- The bispectrum (including the power spectrum) is a good observable

in optical/IR interferometry — the bispectrum in insensitive to phase errors due to
the atmosphere and the interferometry instrument.

- The complex visibility is in special cases also a good observable in optical/IR interferometry:
a) when wavelength-differential phases can be measured (AMBER/GRAVITY/MATISSE)
b) with phase referencing (GRAVITY)

- The task of each image reconstruction in optical/IR interferometry is ,,to find that image which
is consistent with the bispectrum data or complex visibility data*

IRBis is able to handle bispectrum and complex visibility data

| will discuss the imaging with bispectrum data only



Constraints due to the measured data

- Since measured bispectrum is an average over many frames the errors obey Gaussian statistics:
th% consistency of the image with measured bispectrum can be estimated by
X~ statistics
OB (£, f,
( ) \( ) )lzdfudfvrf:ﬁl
0. th fv)

3
2 i ‘Ol(c)fmfv -

X = N
(fu,fv)EM

bispectrum of the image .
bispectrum errors

5 measured bispectrum
if x“ ~ 1 (N =number of measured bispectrum elements):

—p the difference between the measured bispectrum and the bispectrum of the reconstructed
image is about the bispectrum error =—p>
the image is consistent with the measured bispectrum

- This direct fit to the bispectrum is used in nearly all present image reconstruction algorithms.

This direct fit to the bispectrum for image reconstruction was first proposed in
the Building Block Method (BBM) by Hofmann & Weigelt 1991, 1993.



Constraints due to the measured data

The IRBis algorithm, an extension of the BBM, uses the following X2 function:

wq (fu, fv) (3) (3) 2
= v O (fu, £y) — OV (fy, 1y ) |7 dfy diy
Qv = [ e b0 O ()~ O )
fu,fveM measured bispectrum
- Op 3(X) :actual iterated image, and X is a 2D image space vector

- O,i )(fu, f,) :bispectrum of the iterated image

- wq(fyu, fy) :weight to compensate for the unequal distribution of the uv points
(it is proportional to the inverse of the uv point density)

- o(fy,fy) :errors of the measured bispectrum

- Y0 : scaling factor to minimize the value of Q during each iteration step,
i.e. 0, (x) will be not normalised to integral = |;

- f,,f, € M :the amount of all measured bispectrum elements

Q) |0k (x)] is also called the ,,data penalty term* or , likelihood term*



Regularization

Because of the sparse uv coverage, the noise in the data and the non-linearity of the data

» many local minima of the X2 function exist, and therefore many
solutions does exist which could fit the data within the error bars

=== the algorithm has to be helped to find the right solution by introducing prior
information about the target:

- prior info is to force positivity of the reconstruction — all observed astronomical
targets are intensity distributions — have positive values;
this is introduced by the minimization routine as discussed later.

- prior info is the knowledge about the extent of the target: the restriction of the reconstruction
area avoids spikes in the Fourier plane between the observed uv points:
small structures === smooth Fourier transform.
the reconstruction region can be realised by a) restricting the FOV to be reconstructed
and b) by an binary mask in image space (IRBis)

- prior info is also, for example, smoothness of the target: most targets don'’t have a ,,noisy
structure” but mostly a smooth one



Regularization

- prior info is introduced by adding a weighted regularization term H |0 (X)] to the
data constraint term () |0y (X)]

- the algorithm tries to minimize the cost function
Jok(x)] := Qlok(x)] + 1 - H|og(x)] (cost function)

[4 : regularization parameter defining the strength of the influence of H |0 (X)]

- this kind of cost function contain nearly all (or all) image reconstruction algorithms in
optical interferometry

- the goal of the regularization functions is to select that image 0y (X)

out of the pool of all images with X2 ~ 1 (many could exist because of sparse uv coverage)
which has value of H [0y (X)| that s closest to the minimum of /{1

|5



Regularization - regularization functions

|. ,,Pixel intensity" quadratic regularization enforcing smoothness

2
Hlok(x)] := / O]f (%) dx prior(x): can be a) an estimate of the target,
prior(x) or b) a constant, if taget size unknown

ok (X): images normalised to / op(x)dx =1

2.Example: assuming a Gaussian prior normalized to integral I: Minimum of H [0 (x)]

prior image prior image

01 ((Ij) 01 (CU) 02 (:E)

Hloi(z)] < Hloa(x)]

&
Hloy(x)] < H|os(x)]
_> absolute minimum of the regularisation function if Oy (ZE) = prior (ZB) !

the regularisation function tries to draw the images to the shape and
position of the prior

Hloy(x)] < Hoz(x),

|6



Regularization - regularization functions

2. ,,Maximum entropy" enforcing smoothness

Hlog(x)] := / {ok(x) - log{ OE(X) } — ok(x) + prior(x) } dx

3. ,,Pixel difference™ quadratic regularisation function

ool = [ L8R =onCet )P+ lowto) — outx + A 5,

prior(x)

this function enforces smoothness, since it has its minimum value for very small
pixel intensity differences

4. ,,Edge preserving & smoothness’ :

Hlog(x)] := / \/|Ok — op(x + AX)|? + [og(x) — o (x + Ay)|* + € — €] dx

prior(x)

if > [lox(x) — or(x + AX)|? + |ox(x) — or(x + Ay)[?], i.e. small pixel intensity differences =
= smooth areas, — H [0y (x)] is nearly identical to
the ,,pixel difference® quadratic function enforcing smoothness.
In the other case, it is identical to the total variation regularisation function preserving
important details, such as edges (Rudin et al. 1992).
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Minimization algorithms to find the reconstructed image

- in many image reconstruction algorithms, the minimisation of the cost function / [Ok (X)]
is performed by large-scale, bound-constrained nonlinear optimisation algorithms
using the gradient of the cost function to find the solution

- large-scale : because of the huge number of image pixels in the reconstruction;
0k (X) is considered as a NxN dimensional vector with the pixel intensities

as coordinate values (NxN number of pixel of the reconstruction)

- bound-constrained: because of the positivity of the pixel intensities = coordinate values
— coordinate values >0

- nonlinear: because of the non-linearity of the cost function (bispectrum & power spectrum)

- nearly all these optimization algorithms search for the position of the local minimum close by;
this means that the start image should already be close/similar to the true image.

Only the image reconstruction algorithm MACIM, and may be another one,
uses global minimum search (MACIM applies simulated annealing).



Minimization algorithms to find the reconstructed image

- a rough explanation of such a gradient based optimization algorithm for a 2D parameter space:

oJ 9dJ )
8331, 8332

is a 2D vector pointing always into the direction of the steepest increase of (71, T2)

gradient of the function J(x1,22)= grad{ J (1, T2)} = (

Steps of the Steepest Descent method:

|. calculate the gradient of ] at actual position

2. search for the minimum on a line through the actual position .
and along the direction of the gradient.

3. at the position of the minimum the direction. of the gradientis - =
perpendicular to the line of search (because per‘definitionem
the gradient at the minimum position has a gradient of Q), 5

4. after repeating steps 2) and 3) several times the minimum of -.. 4\’
J(x1,22) is reached.

contours showing the curves
with the same value of |




Minimization algorithms to find the reconstructed image

- IRBis uses the nonlinear optimization algorithm ASA CG (Hager & Zhang 2006);
ASA CG is a conjugate gradient based large-scale, bound-constrained, nonlinear optimization
algorithm

- Input to ASA_CG are
| the actual position vector (Ok (Xl), O (Xz), vy Ok (Xj), ey OF (XM))

2.the value of the cost function J |0 (X1), 0k(X2), .-+, 0k (Xj), ..., Ok (X))

3. the gradient of the cost function at the actual position vector

0Jor(x)]  OJ[ox(x)]  OJ[ox(x)] >

8Ok(X1) T 80k(Xj) T 8ok(xM)

grad|J] = (

With these inputs ASA_CG works roughly similar as the ,,steepest descent method"
for searching the position of the local minimum.

Algorithm stops if the length of the gradient of the cost function is close to zero —
if it is smaller than a given positive number.

20



Minimization algorithms to find the reconstructed image

- the gradient of the cost function is
0Tlon(x)] _ 9Qlox(0)] | OH[ow(x)
ok (x;) ok (x;) Doy (%)

. 0Qlok(x)] / wa(fu, fv) (3) (3) X
with aOk (Xj) — 6 72 (fua fv) [’70 Ok (fu> fv) O (fU7 fv)] X
fu,fveM

X O (fy) Ok (fy) - exp [+27mi(fy + £) - x;] dfy, dfy

21



Scan of image reconstruction parameter in IRBis

- main reconstruction parameters are:

|. size of the binary circular mask in image space:
only within the mask, reconstructed intensities >0 are allowed;
the mask enforces the algorithm to reconstruct images with smoother Fourier spectra
(because small structures in image plane produce large, smooth structures in Fourier plane)

2. strength of the regularization parameter (i :
balancing the influence of the measured data ( y term) and the prior data (regularization term)
to the reconstruction: high [ value = strong influence of the prior term

- to find a good reconstruction these 2 parameters are varied:

outer loop: n (~6) different mask radii (usually mask radii increase within this loop™)

inner loop: m (~6) different values of the regularisation parameter;
for each image mask, m reconstruction runs with m [t values are performed
(usually, the (4 values decrease from one to the next run®)

* increasing mask radii / decreasing (4 values:
stronger regularization at the beginning helps to come closer to the
absolute minimum of the cost function J|0y (X)] and helps to find the correct image

22



Scan of image reconstruction parameter in IRBis

- the n x m reconstructions obtained will be evaluated roughly according to their quality
and sorted according to decreasing quality (the best reconstruction and a few of the next
best reconstructions will be stored)

- the image quality is evaluated with a quality measure ,, Qyec ' discussed on the next slide

- start & prior for the first run are the images defined at the beginning of the reconstruction session:
a model image, e.g. a Gaussian, Uniform disk or a more physical model.

start & prior image for the actual run are the reconstruction of the run before:
this was found out to be a good choice and this is the default setting in IRBis

- the next image mask radius is obtained by adding a radius step to the actual radius:
R(j+1)=R(j) + AR
- the next regularisation parameter [ is obtained by multiplying the actual [t by a factor:

(i +1) = p(g) - factor

23



Quality criterion of the reconstructions in IRBis

- the quality of the reconstruction can be evaluated by its X2values:

2 2
duced {2 of th d visibilities : 2 — 1 _ Vi (F)=V=(f) |2
a) reduced y“ of the squared visibilities X2 . fefM ‘ o () ‘ df

b) reduced X2 of the closure phases :

2 _ 1 /Bk(fU7fV)_5(fuafv) Qdf df
Xcp NC’Pf ffeM‘ TB(fu,fv) ‘ ey

Ny=2, Nop : number of measured elements

Good fit to the data : reduced v2 ~ 1, because the deviations between measured and fitted
X oo s
data lies within the error bars.
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Quality criterion of the reconstructions in IRBis

- Additional measure of the reconstruction quality is the so called residual ratio:

[ V() ~ V(D) /ova df

a) residual ratio of the squared visibilities : fe M,
PPV2 =
| VE(E) = V2(D)]/ove(e df
feM_ |
. . f 67? (fu, fV) _ 6(fu7 fV)_/UB(fu,fv) dfudfv
b) residual ratio of the closure phases : fu,fy €My
PPCP ‘= - -
f Bk (fU7 fv) — ﬁ(flh fv) /Uﬁ(fu,fv) dfudfv
fo,f,€M_

M, M_ define the elements with positive and negative residuals, respectively
Good fit to thedata: pp =~ 1 because in this case the fit is balanced between

negative and positive residuals

- A global measure of the reconstruction quality
—>  diec = 1/4- [[x02 — U+ [ppve — 1+ [x&p — U + |ppcp — 1

Good reconstruction with ({rec close to zero.

25



IRBis has been applied to several projects:
Hofmann, K.-H., Weigelt, G., Schertl, D. 2014,A&A, 565,A48

= ,,VLTI-AMBER velocity-resolved aperture-synthesis imaging of n Carinae with a spectral
resolution of 12000%, Weigelt, G. et al. 2016,A&A, 594,A106

20 -10 0 10 20 20 -10 0 10 20 20 10 0 10 20 - L 1o.80

rel. position [mas]
rel. position [mas]

rel. position [mas]
o

GRAVITY+AMBER

~277 -20

rel. position [mas] rel. position [mas] rel. position [mas]

r 10.60

dDEC [mas]

= ,,A High-mass Protobinary System with

Spatially Resolved Circumstellar
Accretion Disks and Circumbinary

Disk®, Kraus,S.etal. 2017,Ap], 835,L5

F70.40

0.20

0.0

45 30 15 0 -15 =30 —45
dRA [mas]

R Scl 1.59 um R Scl 1.68 um N
IRBis Reconstruction IRBis Reconstruction E_]

= ,,Aperture synthesis imaging of the
carbon AGB star R Sculptoris®,
Wittkowski, M., et al. 201 7,A&A, accepted

Intensity



Other image reconstruction algorithms (chronological order)

- BBM (Building Block Method)
authors: Hofmann, Weigelt
optimization:  direct optimization, using the gradient of the cost function in a simple way
regularization: with and without MEM

publications: Hofmann, K.-H. & Weigelt, G. 1993: in Astronomy & Astrophysics 278(1), 328
Hofmann, K.-H. & Weigelt, G. 1991:in F. Merkle (ed.), High Resolution Imaging by Interferometry I, ESO

- BSMEM (BiSpectrum Maximum Entropy Method)
authors: Buscher; Baron,Young

optimization:  Non-linear conjugate gradient method (MEMSYS library)
regularization: one regularization function: MEM-prior
publications: Buscher; D. 1994:in |.G. Robertson, W.T.Tango (eds.), 158.1AU Symposium, | I-15 January 1993, p.91

Young,]. 2004 (Beauty Contest 2004):in W.Ttraub (ed.), Frontiers in Stellas Interferometry,
Vol. 5491, pp. 886-899, SPIE

- MIRA (Multi-aperture Image Reconstruction Algorithm)
authors: Thiebaut
optimization: VMLM-B (quasi-Newton method with bounds on the parameters)
regularization: many regularisation functions
publications: Thiebaut, E. 2002:in J.-L. Starck, FD. Murtagh (eds.), Astronomical Data Analysis I,
Vol. 4847, pp. 1 74-183, SPIE

Thiebaut, E. 2004: (Beauty Contest 2004): in W.Ttraub (ed.), Frontiers in Stellas Interferometry
Vol. 5491, pp. 886-899, SPIE 27



Other image reconstruction algorithms

- WISARD (Weak-phase Interferometric Sample Alternating Reconstruction Device)
authors: Meimon, Mugnier, le Besnerais
optimization: VMLM-B plus a self-calibration step (to get Fourier phases out of the CPs)
regularization: many regularization functions

publications: Meimon,S., Mugnier, LM, le Besnerais, G. 2004 (Beauty Contest 2004): in W.Traub (ed.),
Frontiers in Stellas Interferometry , Vol. 5491, pp. 886-899, SPIE

Meimon, S., Mugnier, L.M., le Besnerais, G.2005: Optics Letters 30(14), 809

- MACIM (MArkov Chain IMager)
authors: Ireland, Monnier
optimization: global optimization with simulated annealing
regularization: MEM

publications: Ireland, M., Monnier, . & Thureau, N. 2006: in |.D. Monnier, M. Schoeller, W. Danchi (eds.), Advances
in Stellar Interferometry,Vol. 6268, pp. 62681 T-1, SPIE

- SQUEEZE
authors: Baron, Monnier, Kloppenborg
optimization: based on MACIM; parallel tempering
regularization: MEM

publications: Kloppenborg, B. & Monnier, J., 2010 (Beauty Contest 2010): in W. Danchi, . Delplancke, J.K.,
Rajagopal (eds.), Advances in Stellar Interferometry,Vol. 7734, pp. 77342N-1, SPIE
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Other image reconstruction algorithms

Differences between the algorithms

- Treatment of the observables
- direct use of the observable (squared visibilities, closure phases) e.g.in MIRA, BSMEM
- forming the complex object bispectrum and its error bars from the observables, e.g. IRBis
- explicit solving for Fourier phases (WISARD)

- Global of gradient optimization
- Gradient optimization, e.g. in MIRA, BSMEM, IRBis
- Global optimization, e.g.in MACIM, SQUEEZE

- Available regularisers

29



Other image reconstruction algorithms

Imaging Beauty Contest 2014 - with real data from VLTI-PIONIER
- Observations of VY CMA and R Car with VLTI-PIONIER

VY CMA 1.67mu FOV 25

108 Hummel/CLEAN . Hofmann/IRBis _ Young/BSMEM _ Sanchez/BSMEM _ Kohler/MIRA )
gray gray _ VY CMA 1.67mu Median Image
50 N '
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- all algorithms show more or less the same morphology
- median image is the average over all reconstrcutions showing the reliable structures
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Enough data for image reconstruction?

The number of independent uv points > the number of filled resolution elements =
= number of resolution elements within the image extent; use more than ~20 uv points!

Holes in the uv coverage will give artefacts in the reconstructed image

Shortest baseline By,in should be well inside the first lobe of the target visibility (visibility ~0.5):

Example: , | Uniform disk (diameter = 13.1 mas)
- a stellar disk is roughly a uniform disk (UD)
- the first zero of the visibility of a UD with angular 08 |
diameter © lies at spatial frequency f, = 1.22/0 >
- to get visibilities within the first lobe, i.e. 5 0%
>
Bmin 1.2 o4
f < fo - < = first lobe fo =1.22/0
0.2 | /
1.22 A 0 . . |
- O <1.22- 5.~ T Omax 0 0.05 0.1 0.15 0.2
min i spatial frequency (cycles per mas)

due to the smallest baseline B, of the array: the diameter
of the target should be not larger than O, .
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Enough data for image reconstruction?
N(N-1)(N-2)

- Number of closure phases of a N-telescope interferometer = 3.9
N-1)(N-2

- Number of independent closure phases = ( )2 )
N(N -1

- Number of phases (i.e. number of baselines) = ( 9 )

= number of independent closure phases < number of phases

Example N=4:
D123 := P94 + Po34 + P314 P93 1= D12 + Paz + P3;

is a linear combination of 3 CPs;
because of $3; = —P5(real image)

(1)41&(1)14 (1)24&(1)42 @43&(1)34 cancel ! —’@123 Z




Enough data for image reconstruction?
N(N-1)(N-2)

- Number of closure phases of a N-telescope interferometer = 3.9
N-1)(N-2

- Number of independent closure phases = ( )2 )
N(N -1

- Number of phases (i.e. number of baselines) = ( 9 )

= number of independent closure phases < number of phases

Example N=4:
D193 1= P94 + Po34 + P314 D103 1= P12 + Po3 + P33

is a linear combination of 3 CPs;
because of $3; = —P5(real image) ,

@41&(1314 (1)24&(1)42 (1)43&(1)34 cancel ! —>¢123




Enough data for image reconstruction?
N(N-1)(N-2)

- Number of closure phases of a N-telescope interferometer = 3.9
N-1)(N-2

- Number of independent closure phases = ( )2 )
N(N -1

- Number of phases (i.e. number of baselines) = ( 9 )

= number of independent closure phases < number of phases

Example N=4:
D193 1= P94 + Po34 + P314 D103 1= P12 + Po3 + P33

is a linear combination of 3 CPs;
because of $3; = —P5(real image) ,

@41&(1314 (1)24&(1)42 (1)43&(1)34 cancel ! —>¢123




Enough data for image reconstruction?
N (N =1)(N —2)

- Number of closure phases of a N-telescope interferometer = 3.9
N—-1)(N-2

- Number of independent closure phases = ( )2 )
N(N -1

- Number of phases (i.e. number of baselines) = ( 9 )

= number of independent closure phases < number of phases

Example N=4:
D93 1= P24 + P34 + P314 D103 1= P1g + Pa3 + P33

is a linear combination of 3 CPs;
because of $3; = —P5(real image)

(1)41&(1314 (1)24&(1342 (1)43&(1)34 cancel ! —>¢123 Z




Enough data for image reconstruction?

N(N-1)(N-2)

- Number of closure phases of a N-telescope interferometer = 3.9
N-1)(N-2

- Number of independent closure phases = ( )2 )
N(N -1

- Number of phases (i.e. number of baselines) = ( 9 )

= number of independent closure phases < number of phases

Example N=4:
D123 := P94 + Po34 + P314 P93 1= D12 + Paz + P3;

is a linear combination of 3 CPs;
because of $3; = —P5(real image)

(1)41&(1)14 (1)24&(1)42 (1)43&(1)34 cancel ! —}@123 Z

Example N=5:
In the same way, Ny
each of the 4 CPs (in 1234) can be replaced 3
by the sum of 3 CPs including telescope 5 I

6 independent CPs

- 3 telescopes |/3 of the Fourier phase information of the complex visibilities

- 4 telescopes 1/2
- 8 telescopes 3/4 5



Image reconstruction parameter

Wavelength range for image reconstruction:

better uv coverage —— better reconstruction!?

wavelength dependence of the target

large wavelength range —
g gth range 7

worse uv coverage .
& —» worse reconstruction!?

small wavelength range —
> less wavelength dependence of target

Estimation of the angular FOV and the number of pixels of the field to be reconstructed

Size of the binary image mask

Regularization function and regularization parameter

Start image & prior image
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Image reconstruction parameter

- Estimation of the angular FOV and number of pixels of the field to be reconstructed

- to avoid cutting, the angular FOV should be ~2-4x the size © of the target

- the highest spatial frequency in the Fourier plane of a NxN grid is N/2:
to avoid aliasing, all uv points should lie within a cut-off frequency at ~ N/4

with the relation  fpixel = f - 'OV, (valid for discrete Fourier transform)

N Bmax

the best value of N can be estimated by — ) - FOVyax

- Size of the binary image mask should be > © and could be < F'OV or larger

f : spatial frequency of a uv point in the data, for example,
Binax /A = highest spatial frequency in the data
Jpixel : corresponding position vector in the Fourier plane of a NxN grid

FOV :angular FOV
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Image reconstruction parameter

- Regularization function and regularization parameter

- for extended and disk-like targets the ,,pixel difference™ quadratic regularisation function
enforcing smoothness, the
,,edge preserving & smoothness" regularization function,and maximum entropy
yield good results

- for binaries and other point-like objects the ,,pixel intensity" quadratic regularization
function is often successful

- some regularization functions can be used with a prior image too, e.g. Gaussian, ...
- regularization parameter [t controls the influence of the prior to the data penalty term

- different start values of (1 can be tested and the one that gives X2 values ~ | is selected

- Start image & prior image could be any geometrical model fitted to the measured data,
e.g. Gaussian, Uniform disk, ...
or any more sophisticated physical model
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Image reconstruction session with IRBis

- IRBis (= Image Reconstruction using the Bispectrum) is part of the contribution of
the MPIfR Bonn to the ESO/VLT| beam combiner MATISSE built by an European consortium

IRBis is coded in C according to ESO standards and its technical name is ,,mat_cal imarec*
the man page of IRBis can be called by: ,,esorex —man-page mat_cal _imarec"
the basic reconstruction run can be called by:
»esorex —log-dir=[directory of the logfile] —output-dir=[directory of the reconstruction results] \
mat_cal _imarec [mat_cal imarec options] [sof = ASCII file containing the input data]"
- for easier handling of an image reconstruction session with IRBis, a shell script, named
,mat_cal_imarec.com®, is provided
Two actions of ,,mat _cal imarec.com®;
|) Inspection of the data:
quality, wavelength range, baseline lengths,
a rough estimation of the size of the target by fitting a Gaussian, Uniform disk,

Fully darkened disk and a Lorentz function to the measured visibilities.

2) The reconstruction run with a presentation of the results.
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Presentation of image reconstruction:

a) simulatetd data
b) PIONIER data

4]



Image reconstruction session with IRBis

- |. action: estimation of some image reconstruction parameters

edit ,,mat _cal imarec.com®:

- in ,,set data =" insert the selected interferometric data (oifits format)
- switch on ,,|.action’ by setting ,,set guess = |

after running of ,,mat_cal imarec.com” the calculated info is stored in ,,data.parameter:
| Information about the data:

- min./max. wavelength
- min./max. projected baseline length
- amount and quality of the data
2.Sizes of geometric models fitted to the squared visibilities ( ):
models: Gaussian, Uniform disk, ....
Note: for disk-like structures these sizes give the correct extension of the target,
but, e.g. for binaries, these sizes represent not the target extension
3. Recommendations about the FOV and size of the NxN grid to be used for

the reconstruction: 1.22 Apax

- max. meaningful target size : Omax = 2 B

- FOV of the reconstruction . FOV =4 X Opax.

- size of NxN grid with N =4. fmax . FOV

4. FOV:s for different NxN grids with [V = 2F are given:
the user can choose that NxN grid suitable for his target (FOV ~ 4 x target size)
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Image reconstruction session with IRBis

- 2. action: image reconstruction run
edit ,,mat_cal _imarec.com" by inserting:
- FOV of the reconstruction
- size of NxN pixel grid
- selected wavelength range

- Start radius of the binary circular image mask, the step size to create the next radius
and the number of masks (~6 different radii):
radius(n) = radius(n-1) + step size
- Start value of the regularization parameter mu, the factor to creat the next mu value
and the number of mu values (~6 different values):
mu(m) = mu(m-1) * factor

- Number of Regularization function

- Power for the uv density weight:
- each bispectrum element is weighted according to its position in the 4D uv plane
- power = 0.5: uv density weight = inverse uv density with power of 0.5

-power =0 : uv density weight = | no weight!

- Select a start image and a prior image (prior image is used for regularization only):
- could be read in (fits format), or
- could be one of the 3 circular geometrical models produced in mat_cal imarec:
Gaussian, Uniform disk, Fully darkened disk
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Image reconstruction session with IRBis — Example

- Reconstruction of the Mira variable R Car observed with VLTI/PIONIER instrument
with 4 ATs (R Car was one target of the imaging beauty contest 2014)

- l.action: estimation of some image reconstruction parameter in ASCII file ,,data.parameter

minimum and maximum wavelength (in m) : 1.66364e—-06 1.68468e-06
minimum and maximum baseline length (in m): 8.07256 133.912

number of measured squared visibilities : 902

number of measured closure phases : 465

average SNR of measured squared visibilities: 24.4123
average error of the closure phase (in deg) : 2.21985

——> recommended FOV of the reconstruction area:

— the size of target should be not larger than Theta max = (1.22/2)*lambda max/B min = 26.258 mas

— the optimal FOV[mas] should be at least 4*Theta max = 105.032 mas

— the optimal FOV[mas] is covered by a NxN pixel grid with N = 4*(B max/lambda min)*4*Theta max = 163.952
(with this grid of size N, all uv points lie within the cut-off frequency f pixel=N/4 -> to avoid aliasing)

——> FOVs with the f pixel=N/4 cut-off frequency for several NxN arrays: 150 Fl T lamo=1.66898 mu - A
* 16x16 pixels ——> FOV = 10.25 as | | | - | | |
32x32 pixels ——> FOV = 20.5 mas .

41.0001 mas
82.0002 mas

64x64 pixels ——> FOV

128x128 pixels —--> FOV

256x256 pixels ——> FOV 164 mas

512x512 pixels ——> FOV 328.001 mas

Note: a) Choose that NxN pixel grid, where the FOV ~ 4x the target
size (e.g. derived from the geometrical model fits below).

b) If you take a smaller FOV for the NxN pixel grid as stated in
the list above, this means that the uv point of the longest
baseline is within N/4, which is no problem.

00 el

* Ok ok *

— Fits to the V"2 data:
* Gaussian ——> FWHM = 7.599 mas (red. Chi"2 = 21.353,)
* Uniform disk ——> diameter = 10.220 mas (red. Chi”"2 = 7463.333,)
* Fully darkened disk ——> diameter = 11.649 mas (red. Chi"2 = 342.480,).

| frequency Y coordinate scaled by lam0 [m]

a0t el T

1a
[

spat

aso b

-150 -100 -50 0 50 100 150
spatial frequency X coordinate scaled by lamO [m]
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Image reconstruction session with IRBis — Example

- Reconstruction of the Mira variable R Car observed with VLTI/PIONIER instrument (4 ATs)

- 2.action: image reconstruction run start mode = 4: Fully Darkened Disk

# INPUT data

set objname = NameOfObject # name of the target

set pfad = /home/user/Testcases/BeautyContest2014/Daten// # absolute path to the interferometric data

set data = (Spfad/R CAR all.fits) # all intgrferometric data with oifits format with its path Spfad/
set lambdaFrom = 1.66 # lambdaFrom lambdaTo : wavelength intervall [mu]

set lambdaTo = 1.69

# INPUT — parameter

set fov = 60.0 Field of view//for the reconstructed image in [mas].
set npix = 128 Size of the peconstructed image in pixels. Powers of 2 should be used (spee
set oradiusStart = 30.0 # 20.0 # starf radius of the object mask [mas]
set stepSize = 1.0 step size for the object mask radius scan [mas]; next radius = actual radiu
set oradiusNumber = 6 number of/ object mask radius scans
oradiusyn) = oradiusStart + (n-1)*stepSize (n = 1..oradiusNumber)
set muStarts = (0.1 0.01) start/value(s) for the regularization parameter mu
set muFactor = 0.5 next/ mu value is actual mu multiplied with mufactor
set muNumber = 12 er of regularization parameter runs

= muStart*muFactor”(n-1) (n = 1..muNumber)

set regFuncs regularisation function(s) (0 = no regularization)

1: pixel intensity quadratic: H(x,y) := Sum{|[ok(x,y)["2/prior(x,y)}

(—4)

= 2: maximum entropy: H(x,y) := Sum{ok(x,y)*alog(ok(x,y)/prior(x
= 3: pixel difference quadratic: H(x,y) := Sum{[[|ok(x,y)-ok(x+dx,y)["2 + |0
= 4: edge preserving: H(x,y) := Sum{[sqrt[|ok(x+dx,y)-ok(x,y)]|"2
= 5: smoothness: H(x,y) := Sum{|ok(x,y)-ok(x+dx,y+dy) [ 2}/p
= 6: quadratic Tikhonov: H(x,y) := Sum{[|ok(x,y,z)-prior(x,y,z)["2}

If a negative number (for example —4) 1is used, the prior image is set to a
Epsilon for regularisation function 4 (edge preserving) only
power for the uv density weight

set regEps
set weightPower

set startmode
set startparam

0 = read from file, 1 = point source, 2 = gaussian disc, 3 = uniform disc,
startmode=0 —-> scale [mas/px], mode=2 —-> FWHM [mas], mode=3 —-> diameter [ma

= read from file, 1 = point source, 2 = gaussian disc, 3 = uniform disc,

Sstartmode 0
mode=0 —> scale [mqﬁ/pxj, mode=2 —> FWHM [mas], mode=3 —> diameter [mas], m

Sstartparam

set priormode
set priorparam

R BT KRR HHRHNHRHRHRNE BHRHHR BHRWN % H



Image reconstruction session with IRBis — Example
- Reconstruction of the Mira variable R Car observed with VLTI/PIONIER instrument (4 ATs)

reconstruction parameter: FOV = 60mas, 64x64 grid, image mask radii 30-36mas

linear display
a) 1.8470 (1.8884)
b) 1.7624 (4.8742)
c) 1.1949 (1.0762)
d) 0.0000 / 1.2269

8470 (1.8884)
7624 (4.8742)

a) 1.
b) 1.
c) 1.1949 (1.0762)
d).0.

)

0000 / 1.2269

sqrt display unconvolved

1.762 (4.859)
1.195 (1.076)
0.0000 / 1.223

1.762 (4.859)
1.195 (1.076)
0.0000 / 1.223

convolved with PSF of 133.9m telescope

(longest baseline = 133.9 le6

Visibility

Closure phase (deg)

1.2

1.0 £

0.8 -

0.4 F

02 F

06 F \\

rgea'sured visibilities - ]
Chi“/RR =1.762/4.859 — |

0.0 &

50 100 150 200 250 300 350 400
spatial frequency (1/arcsec)

200.0 ¢
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0.0 -
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How to judge the quality of a reconstruction — what features are real?

Usually it is not possible to identify a ,,noise level” in the reconstruction because of
regularization and artefacts due to the sparse uv coverage.

Instead we have to consider:
- Are features robust against changing the reconstruction parameter?
- Are the X2 values and residual ratio values pp close to I?

- Compare reconstructions from independent subsets of the data
- split by wavelength or by time

- Image reconstructions with simulated data of a model of the target,
with the same uv coverage and the same SNR as the science data
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How to improve the reconstruction?

- Adjust the size of the FOV to be reconstructed and the size of the corresponding NxN grid
to the reconstructed object

- Use the reconstructed object as start and/or prior object
- initial reconstruction can be smoothed or thresholded and then used as model for the
next run
- Use different regularization functions and different regularization parameter

- Test with a larger or smaller binary mask size

- Test with a larger wavelength range
- Trade between improved uv coverage and intrinsic variation of the object with wavelength
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Summary and Outlook

- most of the present image reconstruction algorithms derive the
image of the object directly from the measured bispectrum, or closure phases and visibilities;
their task is:
,,Find that image which has, within the error bars, the same bispectrum
values as the measured bispectrum®

- they do that task by minimizing the X2 function with different optimization algorithms

- but because of the non-linearity of the data and the sparse uv coverage
prior information and regularization has to be used to find the correct image of the target

- future: multi-spectral data image reconstruction
- beam combiner; like AMBER, GRAVITY and MATISSE, provide simultaneous measurements in
many spectral channels;
- future image reconstruction algorithms will x-y-\ images
using the fact that the targets have show smooth transition between neighbouring spectral channels.
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