Towards finding the missing intermediate period binaries in planetary nebulae

Paulina Sowicka

Nicolaus Copernicus Astronomical Center of the Polish Academy of Sciences, Warsaw, Poland

based on Sowicka et al. 2017, MNRAS accepted

THE IMPACT OF BINARIES ON STELLAR EVOLUTION

ESO GARCHING, JULY 3-7, 2017

Paulina Sowicka et al.

Key points

- \sim 80% PNe are non-spherical \rightarrow Binaries
- Only 20% have detectable close binary stars
- Almost all $P \le 1$ day, but CE models predict many with $P \ge 1$ day

Jones & Boffin (2017)

DO THEY EXIST? HOW TO FIND THEM?

By targeted radial velocity monitoring (Boffin et al. 2012; Van Winckel et al. 2014; Manick et al. 2015; Miszalski et al. 2017; Jones et al. 2017)

A Zoo of morphologies

Jones & Boffin (2017)

	Paul	lina	So	wicka	ı et	al.
--	------	------	----	-------	------	-----

Pre-selection based on morphology

Basic data :

IC 4776 -- Planetary Nebula

Other object types:	<pre>PN (Ref,Hen,), * (CD,GCRV,), Rad (NVSS,PMN,), G (ESO), cm (AT20G), IR (IRAS)</pre>
ICRS coord. (ep=J2000) :	18 45 50.72 -33 20 34.2 (Optical) [] C 2014yCat1.2023S
FK5 coord. (ep=J2000 eq=2000) :	18 45 50.72 -33 20 34.2 []
FK4 coord. (ep=B1950 eq=1950) :	18 42 33.74 -33 23 46.3 []
Gal coord. (ep=J2000) :	002.1002 -13.4437 []
Radial velocity / Redshift / cz :	V(km/s) 18.9 [0.9] / z(~) 0.000063 [0.000003] / cz 18.90 [0.90] A 1953GCRVC0W
Spectral type:	[WC]pec D 1985PASP97.1142A
Angular size (arcmin):	0.117 0.117 90 (Rad) D 2008ApJ6891948
Fluxes (2) :	B 10.6 [~] D ~ V 9.7 [~] E ~

notoci

IC 4776 imagery

Paulina Sowicka et al.

Jets, jets, jets!

Paulina Sowicka et al.

- Spectral type unclear, but often classified as [WC] (e.g. Aller & Keyes 1985)
 - \rightarrow some other long period binaries also Wolf-Rayet
 - wels?

- Observed 10 times using FORS2@VLT-UT1
- Standard reduction technique
- He II λ4541 in absorption used for cross-correlation

Radial velocities

Radial velocity variations, K \sim 30–40 km s^{-1}

Radial velocities

P = 9 days

FLAMES-GIRAFFE integral field spectroscopy

SHAPE modelling

■ Hourglass-like structure, inclined at 42°±4°

■ Age of the nebula of about ~ 1500 years

Each image measures $0.5' \times 0.5'$

Possible secondary masses

- Assumptions: inclination $i = 42^{\circ} \pm 4^{\circ}$, amplitude $K_1 \sim 40$ km s⁻¹, period P = 9 days primary mass $M_1 = 0.6$ M_{\odot}
- Possible secondary masses 0.1 - 0.7 M_☉

- Abundance analysis indicates IC 4776 has a very low adf
- Only other low-adf binary PN also has a "relatively" long period (~4 days) and a [WR] central star
- Connection between low-adfs and [WR]? Between low-adfs and long periods? Between long periods and [WR]?
- Two more [WR] binaries known, no measured adf but both have quite long periods (1.2 d and 142 d)

Take away points

- Missing population of intermediate period post-CE CSPN?
- Definitely a problem for models, but uncertain how much of a problem due to observational bias
- Long-term RV monitoring can help to constrain this by finding these illusive systems (even to very long periods, e.g. 142 d NGC 1360, Miszalski et al. 2017)
- Possible connections between [WR], nebular chemistry and long periods?
- FURTHER STUDIES NEEDED!

based on Sowicka et al. 2017, MNRAS accepted