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Triples

✤ Fairly common 

Binary fraction Triple fraction

Low-mass 
stars 40-50% 10-15%

High-mass 
stars >70% >30%

Refs
Raghavan+ ’10, Tokovinin ‘08, ‘14, 

Remage Evans ’11, Duchene & Kraus ’13,  
Sana+ ’14, Moe+ ’17

Raghavan+ ’10, Tokovinin ‘08, ‘14, 
Remage Evans ’11, Duchene & Kraus ’13,  

Sana+ ’14, Moe+ ’17
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Triple evolution
✓ Triple evolution provoked for:

- Gravitational wave sources, supernova type Ia progenitors, 
mergers, blue stragglers, low-mass X-ray binaries etc. etc.  

✓Unique evolution 
- Three-body dynamics 
- Stellar (& binary) evolution

✓ Impressive recent progress, but little coupling
✤ Rich interacting regime (Shappee+ ‘13, Hamers+ ‘13, Michaely+ ’14, Antonini+ 17)
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New code TRES (Toonen, Hamers, Portegies Zwart 2016) 

✤ Couples three-body dynamics with parametrized stellar evolution 
✤ Dynamics based on the secular-approach (quadrupole & octupole order included)

✤ Stellar evolution tracks from SeBa (Portegies Zwart+ 96, Toonen+ 12,13)

✤ Including:
✤ GW emission
✤ Tides
✤ Precession
✤ Stellar winds

Modelling Triple Evolution

✤ Valid for isolated coeval stellar hierarchical triple evolution 
✤ Coupling possible with N-body code or detailed stellar evolution code 
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Kozai-Lidov cycles

t/Myr t/Myr

e1 i

Eccentricity inner orbit

M1=1.3, M2=0.5, M3=0.5MSun, a1=200, a2 =20000RSun, e1=0.1, e2 =0.5, i=80, g1=0.1, g2=0.5

Mutual inclination

Binary case
Triple case
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Kozai-Lidov cycles
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Mutual inclination
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tual inclination ii as (Innanen et al., 1997):

emax =

�
1− 5

3
cos2(ii), (25)

in the test-particle approximation (Naoz et al., 2013),
i.e. nearly circular orbits (ein = 0, eout = 0) with
one of the inner two bodies a massless test particle
(m1 � m0,m2) and the inner argument of pericenter
gin = 90◦. In this case, the (regular) Lidov-Kozai cycles
only take place when the initial inclination is between
39.2-140.8◦. For larger inner eccentricities, the range
of initial inclinations expands.
For higher orders of ain/aout i.e. the octupole level

of approximation, even richer dynamical behaviour is
expected than for the quadrupole approximation (e.g.
Blaes et al., 2002; Ford et al., 2000; Lithwick and Naoz,
2011; Naoz et al., 2013; Shappee and Thompson, 2013;
Teyssandier et al., 2013). The octupole term is non-
zero when the outer orbit is eccentric or if the stars in
the inner binary have unequal masses. Therefore it is
often deemed the ’eccentric Lidov-Kozai mechanism’.
In this case the z-component of the angular momentum
of the inner binary is no longer conserved. It allows
for a flip in the inclination such that the inner orbit
flips from prograde to retrograde or vice versa (here-
after ’orbital flip’). Another consequence of the eccen-
tric Lidov-Kozai mechanism is that the eccentricity of
the inner binary can be excited very close to unity. The
octupole parameter �oct measure the importance of the
octupole term compared to the quadropole term, and
is defined by:

�oct =
m1 −m2

m1 +m2

ain
aout

eout
1− e2

out

. (26)

Generally, when |�oct| � 0.01, the eccentric Lidov-
Kozai mechanism can be of importance (Naoz et al.,
2011; Shappee and Thompson, 2013).
The dynamical behaviour of a system undergoing

regular or eccentric Lidov-Kozai cycles can lead to ex-
treme situations. For example, as the eccentricity of
the inner orbit increases, the corresponding pericen-
ter distance decreases. The Lidov-Kozai mechanism is
therefore linked to a possible enhanced rate of grazing
interactions, physical collisions, and tidal disruptions
events of one of the stellar components (Ford et al.,
2000; Thompson, 2011), and to the formation of ec-
centric semi-detached binaries (Sect. 2.3.6).

2.3.3 Lidov-Kozai mechanism with mass loss

Eqs. 24 and 26 show that the relevance of the Lidov-
Kozai mechanism for a specific triple strongly depends
on the masses and mass ratios of the stellar compo-
nents. If one of the components loses mass, the triple

can change from one type of dynamical behaviour
to another type. For example, mass loss from one of
the stars in the inner binary, can increase |�oct| sig-
nificantly. As a result the triple can transfer from a
regime with regular Lidov-Kozai cycles to a regime
where the eccentric Lidov-Kozai mechanism is active.
This behaviour is known as mass-loss induced eccentric
Kozai (MIEK) (Michaely and Perets, 2014; Shappee
and Thompson, 2013). See also Sect. 4.3 for an exam-
ple of this evolutionary pathway.
The inverse process (inverse-MIEK), when a triple

changes state from the octupole to the quadrupole
regime, can also occur. Eq. 26 shows this is the case
when mass loss in the inner binary happens to create
an fairly equal mass binary, or when the semi-major
axis of the outer orbit increases. This latter is possi-
ble when the outer star loses mass in a stellar wind
(Sect. 2.2.1).
Another example comes from Michaely and Perets

(2014), who studied the secular freeze-out (SEFO). In
this scenario mass is lost from the inner binary such
that the Lidov-Kozai timescale increases (Eq. 24). This
induces a regime change from the quadrupole regime,
to a state where secular evolution is either quenched
or operates on excessively long time-scales.
The three examples given above illustrate that the

dynamical evolution of a triple system is intertwined
with the stellar evolution of its components. Thus, in
order to gain a clear picture of triple evolution, both
three-body dynamics and stellar evolution need to be
taken into account simultaneously.

2.3.4 Precession

Besides precession caused by the Lidov-Kozai mecha-
nism, other sources of precession exist in stellar triples.
These include general relativistic effects (Blaes et al.,
2002):

ġGR =
3a2Ω3

b

c2(1− e2)
. (27)

Furthermore, orbital precession can be caused by the
distortions of the individual stars by tides (Smeyers
and Willems, 2001):

ġtides =
15kam

(1− e2)5Ωb

�
1 +

3

2
e2 +

1

8
e4
�

ma

md

�
R

a

�5

,

(28)

and by intrinsic stellar rotation (Fabrycky and
Tremaine, 2007):

ġrotate =
kamΩ2

(1− e2)2Ωb

md +ma

md

�
R

a

�5

, (29)

Binary case
Triple case

Pkozai = α
P 2
2

P1

m1 +m2 +m3

m3
(1− e22)

3/2
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M1=1.3, M2=0.5, M3=0.5MSun, a1=200, a2 =20000RSun, e1=0.1, e2 =0.5, i=80, g1=0.1, g2=0.5

... with dissipation

t/Myr

e1

Eccentricity inner orbit

t/Myr

a1
 (R

Su
n)

Semimajor-axis inner orbit

Binary case
Triple case

Dissipation:
- Tides, gravitational wave emission
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Triple evolution leads to...
➡Enhanced occurence rate of mass transfer 

✤ ~1.5x more often mass transfer compared to binaries (Toonen+ in prep.)

✤ ~40% of Roche lobe overflow in an eccentric orbit (Toonen+ in prep.)

- Interesting for 
- Blue stragglers (Perets & Fabrycky ’09) 

- Great eruption of Eta Carinae (Portegies Zwart & van den Heuvel ’16) 

Type of donor star
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Triple evolution leads to...
➡Enhanced occurence rate of mass transfer 
➡Enhanced formation rate of compact binaries

✤ Excess of close MS-MS (Fabrycky & Tremaine ’07, Naoz+ ’11)

✤ 96% is part of a triple (Tokovinin+ ’06)

then we accepted the triple as stable and integrated its averaged
equations of motion. Otherwise, we assumed it disrupted, result-
ing in an unbound binary and single star (we do not include those
binaries in the following results). About 40% of selected triples
failed to fulfill condition (37). A total of 7 ; 104 stable systems
were integrated and the results are presented here.

5.2. Stopping Conditions

In most cases we stopped the integrations at 10 Gyr, roughly
the main-sequence lifetime of a 1 M! star. However, for some
systems a straightforward integration of the averaged equations
of motion was prohibitively expensive. In these cases we used
the following procedure to deduce the final state without a costly
integration.

The largest such group is triples whose Kozai cycle does not
cause pericenter passages close enough for tidal dissipation to be
effective. For these we integrated the equations until the first ec-
centricitymaximum and computed the eccentricity damping time-
scale (V1 þ V2)

#1 (eq. [A1]) there. If it was longer than 10 Gyr,
we integrated until a second eccentricity maximum, then took the
properties at a random time in the interval between the maxima,
similar to the method of Takeda & Rasio (2005). These systems
will oscillate for their wholemain-sequence lifetimes, so choosing
a random point of an oscillation near the initial time is statistically
indistinguishable from a random time at the currently observed
epoch.

If the triple is strongly hierarchical initially, or if it is driven to
such a state by KCTF, then the pericenter precession due to
relativity and stellar distortion dominates that of the third body.
As shown in x 3.2, Kozai cycles are suppressed in this case, so
the subsequent evolution is very similar to that of an isolated bi-
nary. Therefore, we stopped the integration once the Kozai time-
scale was more than 30 times the pericenter precession period,
and evolved the system to 10Gyr by the equations for eccentricity
damping neglecting the third body (see x 4). In real systems, the
third body actually continues to have a modest effect which is not
modeled by the orbit-averaged equations of motion (Mazeh &
Shaham 1979), which we neglect. As long as this timescale cri-
terion was satisfied, we also neglect the effect that nodal preces-
sion of the inner orbit has on tidal dissipation.

Finally, some systems took many thousands of Kozai cycles
to evolve significantly.We stopped individual integrations at 4CPU
minutes, and if the systemhad not reached 10Gyr and appeared still
to be evolving, we reintegrated it with an artificially small viscous
time so that the evolution would take place in $100 Kozai cy-
cles. For some individual systems we checked that the final state
of this integration had parameters to within a percent of those of
the final states of the original systems. These systems either reached
the end of their allotted time, which was scaled down from 10 Gyr
in proportion to the scaling of the viscous time, or stopped oscil-
lating,which allowed the neglect of the third body in integrating the
further evolution as above.
This method of speeding up the computation relies on the fact

that the tidal dissipation timescale is a much stronger function of
orbital period than of viscous time: tF / P16/3

in tV , according to
equation (A9). This scaling also implies that the final period dis-
tribution we compute is quite insensitive to the assumed viscous
time.

5.3. Numerical Results

Figure 5 shows the relation between the initial and final period
distributions for the inner binary. Shaded portions of the histogram
show how initial periods map to final periods. The main result is
the strong peak in the distribution of periods nearPin;Bnal ’ 3 days.
The great majority of these systems have evolved onto circular
inner binary orbits for which the perturbation of the third star no
longer causes interesting effects. As an aside, we note that the ini-
tial period distribution of inner binaries (Fig. 5a) is peaked to-
ward lower values than the initial period distribution of isolated
binaries displayed in Figure 4a; the latter is simply theDuquennoy
&Mayor (1991) distribution. This difference is a consequence of
the definition of an inner binary, which biases inner binaries to
lower periods and outer binaries to higher periods.
Let us pause to compare the final period distribution to the ob-

served systems. In Figure 6 we plot the fraction of spectro-
scopic binaries determined to have a tertiary by Tokovinin et al.
(2006). We also plot a theoretical distribution determined by our

Fig. 5.—Periods of the inner binaries of the simulated triples before and after
10 Gyr of evolution by Kozai cycles with tidal friction. (a) Histogram of the as-
sumed initial inner period distribution. (b) Histogram of the final period distribu-
tion, showing the production of numerous close binaries with 0:1 daysPPin;Bnal P
10 days, many of which initially had much longer periods.

Fig. 6.—Fraction of binaries with tertiaries. The points are from the obser-
vational study of Tokovinin et al. (2006); horizontal bars indicate the period range
and vertical bars represent the error on the fraction of tertiaries. The gray theoretical
histogram is constructed via a linear combination of the final distributions com-
puted in xx 4 and 5. Two free parameters were varied to achieve a best fit with the
observational results: (a) the overall fraction of triples relative to all systems (bi-
naries plus triples)—0.25 was the best fit—and (b) the cutoff period of the pri-
mordial distribution—6 days was the best fit, corresponding to histograms in
Figs. 4b and 5b including only the two darkest shaded regions.

FABRYCKY & TREMAINE1306 Vol. 669
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➡Enhanced occurence rate of mass transfer 
➡Enhanced formation rate of compact binaries
➡Enhanced merger rate of compact objects

BH-BH mergersTriple evolution leads to...

BH-BH mergers
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Conventional formation channels:
✤ Dynamical interactions in dense environments (e.g. 

Rodriguez+ 15)

✤ Isolated massive binaries in the field (e.g. Belczynski+ 10, 16)

✤ Chemically homogeneous evolution of compact 
binary (e.g. Mandel & de Mink ’16)

➡Enhanced occurence rate of mass transfer 
➡Enhanced formation rate of compact binaries
➡Enhanced merger rate of compact objects

BH-BH mergersTriple evolution leads to...

BH-BH mergers
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Evolutionary channel

1) Three massive stars in wide orbits
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2)Three supernovas

Evolutionary channel

1) Three massive stars in wide orbits
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Evolutionary channel

1) Three massive stars in wide orbits

2)Three supernovas

3) Merger due to secular dynamics
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Difficulties

1) Three massive stars in wide orbits

2)Three supernovas
Avoids: a)Mass transfer 

   b)Dynamical instabilities
   c)Dissolution

3) Merger due to secular dynamics
Get a merger, but not at earlier stage
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Difficulties

1) Three massive stars in wide orbits

3) Merger due to secular dynamics
Get a merger, but not at earlier stage

But no mass transfer or  
common-envelope needed!

2)Three supernovas
Avoids: a)Mass transfer 
           b)Dynamical instabilities
           c)Dissolution
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BH-BH mergers
➡Enhanced occurence rate of mass transfer 
➡Enhanced formation rate of compact binaries
➡Enhanced merger rate of compact objects

✤ Observed rate (Abbott+16): 2-600 per year per Gpc^3 
✤ With natal-kick: ~0.4 per year per Gpc^3 
✤ Only Blaauw-kick: ~1.2 per year per Gpc^3

✤

4 Antonini, Toonen, and Hamers

Fig. 2.— Distribution of relative inclination of outer to inner orbit for the BH triples formed in our models according to the secular
population synthesis code (black histograms), and for the triples which produce BH mergers (red histograms). The number of systems are
normalized by the total number of stable BH triples formed. This plot shows that the initial distribution of I is not isotropic and that
most merging BH binaries are produced in BH triples with initially high mutual inclinations.

TABLE 1

Results of the population synthesis models of massive triple stars.

Model natal kicks a2;max m3;min Nsim fraction fraction fraction �3BH �merge Γ
(103AU) (M⊙) disrupted mass transfer dyn. unstable (Gpc−3yr−1)

A1 0 20 0.1 75k 0.31 0.27 0.19 0.23 5× 10−3 1.2
A2 0 2 22 75k 0.14 0.43 0.22 0.21 7× 10−3 1.1
B1 Hobbs 20 0.1 25k 0.56 0.26 0.12 0.06 6× 10−3 0.4
B2 Hobbs 2 22 25k 0.36 0.41 0.17 0.06 1× 10−2 0.4
C1 Arzoumanian 20 0.1 25k 0.56 0.26 0.13 0.05 7× 10−3 0.4
C2 Arzoumanian 2 22 25k 0.35 0.42 0.17 0.06 5× 10−3 0.3

Models differ by their natal kick velocity distribution, adopted maximum value of separation, a2,max, and minimum mass, m3;min, of the
tertiary star. Nsim is the total number of stellar triples that were evolved for each model; �3BH is the fraction of systems that produce
stable BH triples; �merge is the fraction of the stable BH triples that lead to the merger of a BH binary; and Γ is the inferred BH binary

merger rate.

tion of a BH merger. The secular exchanges of angular
momentum (but not energy) among the inner binary and
the outer BH induce large fluctuations in the inner bi-
nary eccentricity and inclination. The orbit of the inner
binary, starting from an initial value of e1 = 0.65 and
I = 93◦.8, by ≈ 3×106yr has diffused to 1−e1 ≈ 1×10−4.
We find that the maximum orbital eccentricity of the
inner binary undergoes a random walk to most of the
phase space allowed by the total energy and angular mo-
mentum of the system. During the maximum of a LK
oscillation the binary enters the non-secular regime de-

fined by Equation (1). In this region the inner BHs can
be driven to a merger before general relativistic effects
suppress the secular forcing. At the end of the integra-
tion, GW radiation starts to dominate the binary evolu-
tion. Subsequently, the BH binary starts to circularize,
decouples from the tertiary companion, and finally en-
ters the 10Hz aLIGO frequency band with e1 = 0.4 and
a1 = 1.5× 10−5AU.

4.1. Properties

Hobbs / Arzoumanian, momentum-
conserving kicks, direct collapse for 
M>40Msun, 

➡Triple BHs formed
➡Merging BHs

✤ Important to 
model formation 
of BH-BH in 
triples consistently
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✤ Eccentricity upon entering 
the LIGO band

Distinct characteristics

Binary black hole mergers from field triples 7

Fig. 5.— Distribution of eccentricities at the moment the BH
binaries enter the aLIGO frequency band (10Hz) for mergers pro-
duced by dynamical interactions in dense star clusters, massive bi-
nary stars, and massive triples (models A1+A2). Binaries formed
in triples have much larger eccentricities than those formed through
other channels.

likely to be retained in triples and merge.
Finally, the right panel of Figure 4 shows the time delay

distribution, where Tdelay is the time from formation of
the BH triple to the merger of the inner BH binary. Note
that for a 22M⊙ star the time from formation of the star
to the formation of the BH is � 8 Myr. The time delay
distribution of our merging binaries shows a steady rise
followed by a decline around 10 Gyr. In models with no
birth kicks, about ≈ 60% of all merging binaries have
delay times � 1Gyr, while this percentage increases to
≈ 70% in models with non-zero natal kicks. All merging
binaries appear to have delay times larger than ≈ 106yr.

4.2. Merger rates

In order to compute the merger rate of binary BHs,
we follow the procedure described in Silsbee & Tremaine
(2016). The number of stars formed per unit mass is
given by:

N�(m)dm = 5.4× 106m−2.3Gpc−3yr−1. (5)

Adopting a constant star formation rate per comoving
volume unit, the merger rate of binary BHs is then:

Γ ≈ N22,100�prog�p−space�3BH�merge, (6)

where N22,100 = 6×104Gpc−3yr−1 is the number of stars
formed with mass between 22 and 100 solar masses.
The quantity �prog in Equation (6) is the ratio of BH

triple progenitors to total BH progenitors. As in Silsbee
& Tremaine (2016), we assume the following: 19% of sys-
tems with at least one BH progenitor are single systems,
56% are binaries, and 25% are triples. These percentages
are consistent with the observations of Sana et al. (2014)
who found these fractions of multiplicity for the O-stars
in their sample; the observed companions in Sana et al.
(2014) are resolved or spectroscopically identified within
a separation of ≈ 6000AU. Given our mass distributions,
for models A2, B2 and C2, we find a fraction �prog = 0.04

of triple progenitors with (m1, m2, m3) > 22M⊙, and
for models A1, B1 and C1 we find a fraction �prog = 0.06
of triple progenitors in which the inner binary compo-
nents have ZAMS mass (m1, m2) > 22M⊙.
The quantity �p−space is the fraction of parameter space

that we are simulating relative to the full parameter
space for triples with masses above 22 M⊙. This fraction
is �p−space ≈ 0.3 in our models and takes into account the
fact that we are simulating only triples with a1 > 11AU
initially, which represent a fraction of the full population
of stellar triples covered by observations.
Finally, �merge is the fraction of dynamically stable

BH triples formed in our models which produce a BH
merger. This fraction is ≈ 0.5% and appear to be ap-
proximately independent on the assumed distribution of
natal kick velocities. This can appear quite surprising:
one would expect that the change in linear momentum
instantaneously imparted to the exploding stars to al-
ter the orientation of orbital planes subsequent to BH
formation and result in a larger number of BH triples
that are formed with initially high inclination, leading
to a larger fraction of merging binaries (e.g., Silsbee &
Tremaine 2016). Our models, clearly suggest that this
latter effect has a negligible impact on the resulting BH
binary merger rate.
Table 1 gives the results of our calculations. We es-

timate the BH merger rate in isolated triple systems in
the field to be at most ≈ 1 Gpc−3yr−1.
Some of our models can be directly compared to the

results of Silsbee & Tremaine (2016). For example, sim-
ilar to our models A1 and A2, the latter authors also
consider models where the BHs receive no natal kicks
(see their Table 2). Their zero-kick models produce a
merger rate of ≈ 6 Gpc−3yr−1, which is about six times
larger than the merger rate inferred from our simulations.
One reason for the discrepancy in the rate estimates is
that Silsbee & Tremaine (2016) assume zero Blaauw kick
(Blaauw 1961) which increases the chance that a triple
in their zero-kick models will survive the formation of a
BH, leading to higher merger rates. Moreover, Silsbee &
Tremaine (2016) assume that BH triples are formed with
initially random inclinations. However, in many of the
highly inclined triples in our models, the two inner ob-
jects merge early during their main-sequence evolution.
Silsbee & Tremaine (2016) also consider models with a

non-zero kick velocity. In one of their models, they adopt
a Gaussian kick velocity distribution with σ ≈ 40km s−1

which results in a merger rate of ≈ 0.14 Gpc−3yr−1 (see
their Table 2). This appears to be a few times smaller
than the rate inferred from our non-zero kick models B1,
B2 and C1, C2.

5. ADDITIONAL CONSIDERATIONS

5.1. Effects of non-secular dynamics

As shown above in Figure 3, the merging binaries in
our models evolve through a non-secular dynamical phase
where the standard secular perturbation theory is ex-
pected to break down. This has important consequences
on both the properties and the merger rate of binaries
formed through the triple channel. These binaries will in
fact have higher eccentricities as they enter the aLIGO
band and a higher chance of merging than what we would
predict based on the standard secular equations of mo-

4 Antonini et al.

Fig. 1.— Formation of a BH merger in one of our simulations (AR-CHAIN integration). Masses and initial orbital parameters were as
follows: m1 = 8.96 M⊙, m2 = 7.51 M⊙, m3 = 8.35 M⊙, a1 = 1727AU, a2 = 16571AU, e1 = 0.65, e2 = 0.29, I = 93◦.8, g1(rad) = 0.61,
g2(rad) = −2.82, and the longitude of the ascending node Ω1(rad) = −2.4. Radial excursions of the three BHs (semi-major axis, periapse
and apoapse) are shown as functions of time, with the red line demarcating the region below which the standard secular perturbation
theory breaks down according to Equation (1). At ≈ 109yr, the two BHs approach closely each other and energy dissipation due to GW
radiation leads to a sudden decrease in the inner binary semi-major axis; at the end of the simulation, after ≈ 1.3× 109yr, the inner binary
merges. The right panel displays the evolution of the inner binary eccentricity as a function of the peak gravitational wave frequency as
defined in Equation (4). The binary evolves into the LISA frequency band, fGW � 10−3Hz (Amaro-Seoane et al. 2017), with extremely
high eccentricities. The GW driven inspiral starts at fGW ≈ 5Hz, outside the LISA frequency window. By the time the binary reaches the
10Hz frequency its eccentricity is e1 ≈ 0.4.

TABLE 1

Results of the population synthesis models of massive triple stars.

Model natal kicks a2;max m3;min Nsim fraction fraction fraction �3BH �merge Γ
(103AU) (M⊙) disrupted mass transfer dyn. unstable (Gpc−3yr−1)

A1 0 20 0.1 50k 0.31 0.27 0.19 0.18 6× 10−3 1.3
A2 0 2 22 50k 0.14 0.43 0.22 0.21 7× 10−3 1.2
B1 Hobbs 20 0.1 25k 0.56 0.26 0.12 0.06 5× 10−3 0.4
B2 Hobbs 2 22 25k 0.36 0.41 0.17 0.06 1× 10−2 0.5
C1 Arzoumanian 20 0.1 25k 0.56 0.26 0.13 0.05 8× 10−3 0.5
C2 Arzoumanian 2 22 25k 0.35 0.42 0.17 0.06 5× 10−3 0.3

Models differ by their natal kick velocity distribution, adopted maximum value of separation, a2,max, and minimum mass, m3;min, of the
tertiary star. Nsim is the total number of stellar triples that were evolved for each model; �3BH is the fraction of systems that produce
stable BH triples; �merge is the fraction of the stable BH triples that lead to the merger of a BH binary; and Γ is the inferred BH binary

merger rate.

In Figure 2, we show the distribution of the inclination
between inner and outer orbit of the initial BH triples
(black histograms), and of the subset of these that pro-
duce BH mergers (red histograms). Figure 2 shows that
essentially all merging binaries are formed in triples with
high inclination and in the range 70◦ � I � 110◦. The
initial BH triples are formed with a distribution which is
clearly anisotropic, with a deficit of orbits near cos I = 0.
This is a consequence of many initially highly inclined
systems that due to the LK mechanism merge or un-
dergo a phase of mass transfer before the three BHs are
formed. This effect, similarly occurring in the evolution
of lower-mass triples (Hamers et al. 2013), reduces the
number of BH triple systems with high inclination which
can lead to a BH binary merger, lowering the overall BH
merger rate compared to what we would obtain by as-
suming an initially random distribution of inclinations
(e.g., Silsbee & Tremaine 2016).
Figure 2 shows that the I distribution of BH triples

with initially larger semi-major axis is closer to isotropic.
The reason for this is that systems where the tertiary is
at larger separation are less likely to merge during their

main-sequence evolution given their longer LK timescale
(see Equation [2]) and that the e-oscillations are more
strongly quenched by precession of the periapsis due to
relativity or due to tidal bulges for larger values of a2/a1
(e.g., Blaes et al. 2002; Fabrycky & Tremaine 2007).
Figure 3 gives the distribution of the semi-major axes

a1 and a2 at the moment the triple BHs are formed and
for the subset of the BH triples that lead to merging
binaries. These plots show that our mergers are produced
in BH triples with a1 � 100AU, and a2 � 1000AU. The
left panels of Figure 3 give the distribution of the ratio
a2(1 − e2)/a1. This latter quantity parametrizes how
well the dynamics of the system can be described by the
standard secular equations of motion. The non-secular
region in Figure 3 was computed from Equation (1) by
requiring the inner BH binary to reach an eccentricity
large enough for GW radiation to dominate its evolution.
One finds that the inner binary can enter the non-secular
regime if (Antonini et al. 2016):

a2(1− e2)

a1
� 2.5

�
m3

m1 +m2

�1/3 � a

Ddiss

�1/6

, (3)

✤ Chen & Amaro-Seoane+17:
✤ e ~>5e-3 hard to detect with LISA
✤ ~40% of our systems

Taken from 
Breivik+ ’16

✤ High eccentricities in 
the LISA band!

based on Wen+ ‘03
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Summary

✤ The presence of a third star can have a strong effect on the
evolution of the inner binary
✤ Evolution: Three body dynamics + stellar evolution 

✤ Rich interacting regime (Shappee+ ‘13, Hamers+ ‘13, Michaely+ ’14, Toonen+ ’16,  Antonini, Toonen 
& Hamers ’17)

✤ New code TRES for (coeval stellar hierarchical) triple evolution (Toonen+ 
2016 => also for review on triple evolution in stellar systems)

✤ BH-BH mergers from isolated triples (Antonini, Toonen & Hamers ’17)
✤ Rate: 0.3-1.3 per year per Gpc^3
✤ Few detections per year with aLIGO, harder to detect with LISA
✤ High eccentricities due to 3body dynamics  
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Evolutionary channel
Example: (inner) binary: M1 = 8.96, M2 =7.51Mo, a_in= 1727 AU, e_in=0.65, g_in = .61 rad
tertiary star M3=8.35Mo on an orbit with a_out = 16571 AU, e_out =0.29, i=93o, g_in = -2.82 rad4 Antonini et al.

Fig. 1.— Formation of a BH merger in one of our simulations (AR-CHAIN integration). Masses and initial orbital parameters were as
follows: m1 = 8.96 M⊙, m2 = 7.51 M⊙, m3 = 8.35 M⊙, a1 = 1727AU, a2 = 16571AU, e1 = 0.65, e2 = 0.29, I = 93◦.8, g1(rad) = 0.61,
g2(rad) = −2.82, and the longitude of the ascending node Ω1(rad) = −2.4. Radial excursions of the three BHs (semi-major axis, periapse
and apoapse) are shown as functions of time, with the red line demarcating the region below which the standard secular perturbation
theory breaks down according to Equation (1). At ≈ 109yr, the two BHs approach closely each other and energy dissipation due to GW
radiation leads to a sudden decrease in the inner binary semi-major axis; at the end of the simulation, after ≈ 1.3× 109yr, the inner binary
merges. The right panel displays the evolution of the inner binary eccentricity as a function of the peak gravitational wave frequency as
defined in Equation (4). The binary evolves into the LISA frequency band, fGW � 10−3Hz (Amaro-Seoane et al. 2017), with extremely
high eccentricities. The GW driven inspiral starts at fGW ≈ 5Hz, outside the LISA frequency window. By the time the binary reaches the
10Hz frequency its eccentricity is e1 ≈ 0.4.

TABLE 1

Results of the population synthesis models of massive triple stars.

Model natal kicks a2;max m3;min Nsim fraction fraction fraction �3BH �merge Γ
(103AU) (M⊙) disrupted mass transfer dyn. unstable (Gpc−3yr−1)

A1 0 20 0.1 50k 0.31 0.27 0.19 0.18 6× 10−3 1.3
A2 0 2 22 50k 0.14 0.43 0.22 0.21 7× 10−3 1.2
B1 Hobbs 20 0.1 25k 0.56 0.26 0.12 0.06 5× 10−3 0.4
B2 Hobbs 2 22 25k 0.36 0.41 0.17 0.06 1× 10−2 0.5
C1 Arzoumanian 20 0.1 25k 0.56 0.26 0.13 0.05 8× 10−3 0.5
C2 Arzoumanian 2 22 25k 0.35 0.42 0.17 0.06 5× 10−3 0.3

Models differ by their natal kick velocity distribution, adopted maximum value of separation, a2,max, and minimum mass, m3;min, of the
tertiary star. Nsim is the total number of stellar triples that were evolved for each model; �3BH is the fraction of systems that produce
stable BH triples; �merge is the fraction of the stable BH triples that lead to the merger of a BH binary; and Γ is the inferred BH binary

merger rate.

In Figure 2, we show the distribution of the inclination
between inner and outer orbit of the initial BH triples
(black histograms), and of the subset of these that pro-
duce BH mergers (red histograms). Figure 2 shows that
essentially all merging binaries are formed in triples with
high inclination and in the range 70◦ � I � 110◦. The
initial BH triples are formed with a distribution which is
clearly anisotropic, with a deficit of orbits near cos I = 0.
This is a consequence of many initially highly inclined
systems that due to the LK mechanism merge or un-
dergo a phase of mass transfer before the three BHs are
formed. This effect, similarly occurring in the evolution
of lower-mass triples (Hamers et al. 2013), reduces the
number of BH triple systems with high inclination which
can lead to a BH binary merger, lowering the overall BH
merger rate compared to what we would obtain by as-
suming an initially random distribution of inclinations
(e.g., Silsbee & Tremaine 2016).
Figure 2 shows that the I distribution of BH triples

with initially larger semi-major axis is closer to isotropic.
The reason for this is that systems where the tertiary is
at larger separation are less likely to merge during their

main-sequence evolution given their longer LK timescale
(see Equation [2]) and that the e-oscillations are more
strongly quenched by precession of the periapsis due to
relativity or due to tidal bulges for larger values of a2/a1
(e.g., Blaes et al. 2002; Fabrycky & Tremaine 2007).
Figure 3 gives the distribution of the semi-major axes

a1 and a2 at the moment the triple BHs are formed and
for the subset of the BH triples that lead to merging
binaries. These plots show that our mergers are produced
in BH triples with a1 � 100AU, and a2 � 1000AU. The
left panels of Figure 3 give the distribution of the ratio
a2(1 − e2)/a1. This latter quantity parametrizes how
well the dynamics of the system can be described by the
standard secular equations of motion. The non-secular
region in Figure 3 was computed from Equation (1) by
requiring the inner BH binary to reach an eccentricity
large enough for GW radiation to dominate its evolution.
One finds that the inner binary can enter the non-secular
regime if (Antonini et al. 2016):

a2(1− e2)

a1
� 2.5

�
m3

m1 +m2

�1/3 � a

Ddiss

�1/6

, (3)

✤ High-eccentricity behaviour: jump in Jinner_orbit by order unity (Antonini & Perets 
12, Katz & Dong ‘12)

✤ Step 3): high-precision direct integrator for systems with weaker 
hierarchies (Mikkola & Merritt 08)

based on Wen+ ‘03
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Kozai-Lidov cycles

t/Myr t/Myr

e1 i

Eccentricity inner orbit

M1=1.3, M2=0.5, M3=0.5MSun, a1=200, a2 =20000RSun, e1=0.1, e2 =0.5, i=80, g1=0.1, g2=0.5

Mutual inclination

Pkozai = α
P 2
2

P1

m1 +m2 +m3

m3
(1− e22)

3/2

Poct ∼ Pkozai/� � ≡ m1 −m2

m1 +m2

a1
a2

e2
1− e22

Regular Kozai:

Eccentric Kozai:

Binary case
Triple case
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MIEK - Mass-loss induced eccentric Kozai (Shappee & Thompson 2013)
 

✤ Mass-loss from the inner binary causes a transition from regular 
quadrupole Kozai behaviour to where the octupole becomes significant

In other words:
1. Primary star becomes compact object without RLOF

2. Afterwards, secondary fills RL

✤ Special evolutionary channel: accreting compact objects without 

common-envelope phase! (see also: Shappee & Thompson ‘13, Michaely & Perets ’14)

✤ How often does this happen in triples?
✤ a few in a 1000 systems for all models (Toonen+ in prep.)

MIEK
Shappee & Thompson (2013) 
studied the case of mass-
loss from a component in the inner 
binary, which leads
to a transition from a more regular 
Kozai-Lidov secular
behavior to the regime where 
octupole level perturba-
tions become significant, and the 
amplitude of eccentric-
ity changes become significant; a 

behavior 

Poct ∼ Pkozai/� � ≡ m1 −m2

m1 +m2

a1
a2

e2
1− e22
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MIEK

✤ Standard example: 
m1=7MSun, m2=6.5MSun, m3=6Msun; a1=10AU, a2=250AU,  e1=0.1, 
e2=0.7, g1=0, g2=180, i=60
✤ Varying i, e1, e2, g1: 

✤ 2 up to 7% of systems go through MIEK (Shappee & Thompson 2013) 

✤ However... 
✤ Even if the inner binary was isolated, RLOF when a1<15AU
✤ Slightly wider orbits affected by Kozai-Lidov induced-RLOF and 

wind-induced dynamical instabilities

Shappee & Thompson (2013) 
studied the case of mass-
loss from a component in the inner 
binary, which leads
to a transition from a more regular 
Kozai-Lidov secular
behavior to the regime where 
octupole level perturba-
tions become significant, and the 
amplitude of eccentric-
ity changes become significant; a 

behavior 
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Roche Lobe Overflow
✤ In the outer binary from the outer companion

✤ How often does this happen in triples?
✤ 0.5% for model uncorrelated binaries I
✤ 1% for model uncorrelated binaries II (Tokovinin)
✤ 0.9% for model Eggleton  

✤ In good agreement with de Vries ea ’13
✤ For 1% of triples in the Tokovinin catalogue (full primary mass 

range), the outer companion initiates RLOF before any of the 
inner stars leave the main sequence

✤ Predominantly evolved (AGB) donor stars
✤ From SPH simulations for ξ Tau and HD97131 
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Effect of wind mass-loss in inner binary:
✤ Orbits widen, inner orbit widens more
✤ Orbits come closer to each other        possible dynamical instability

Dynamical instability
M1 = 7, M2 =1, M3=6MSun, a1= 1e4, a2 = 5e5RSun, e1=0.1, e2 =0.8, i=0, g1=0.1, g2=0.5

t/Myr t/Myr

M
/M

Su
n

a2
/a

1

Stellar mass Ratio of outer and inner semimajor-axis 

inner orbit: primary star 1
inner orbit: secondary star 2
outer companion star3

af
ai

=
Mi

Mf
= 1− ∆M

M
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Triple dynamical instability (e.g. Kiseleva+ ’94, Iben & Tutukov ’99)

✤ Rate: 3% of all triples (Perets & Kratter ‘12, Hamers+ ‘13, Toonen+ in prep.)

✤ close encounters, collisions, stellar exchanges, eccentric binaries
✤ high collision rate, involving AGB stars (Perets & Kratter ‘12)

Dynamical instability
M1 = 7, M2 =1, M3=6MSun, a1= 1e4, a2 = 5e5RSun, e1=0.1, e2 =0.8, i=0, g1=0.1, g2=0.5

t/Myr t/Myr

M
/M

Su
n

a2
/a

1

Stellar mass Ratio of outer and inner semimajor-axis 

inner orbit: primary star 1
inner orbit: secondary star 2
outer companion star3

we demonstrate that the rate of 
stellar collisions due to the TEDI
is approximately 10−4  yr−1  per 
Milky-Way Galaxy, which is nearly 
30 times higher than the total
collision rate due to random 
encounters in the Galactic globular

 Moreover, we find that the
dominant type of stellar collisions is 
qualitatively different; most collisions 
involve asymptotic giant
branch stars, rather than main 
sequence, or slightly evolved stars, 
which dominate collisions in globular
clusters.
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Summary
✤ The presence of a third star can have a strong effect on the
evolution of the inner binary

✤ Triple evolution can lead to:
✤ Enhanced formation of compact binaries 
✤ Enhanced occurrence rate of mass transfer 

✤ Evolution: Three body dynamics + stellar evolution 
✤ Rich interacting regime (Shappee+ ‘13, Hamers+ ‘13, Michaely+ ’14, Toonen+ ’16)

✤ New code TRES for (coeval stellar hierarchical) triple evolution (Toonen
+ 2016,  Toonen+ in prep.)

✤ Goal veni: Create comprehensive model of triple evolution

At the same time, triple evolution is often invoked to explain exotic 
systems which cannot be explained easily by binary
evolution. Examples are low-mass X-ray binaries, supernova type Ia 
progenitors and blue stragglers.

What are the common evolutionary pathways that triple systems evolve 
through? Are there
any evolutionary pathways open to triples, which are not open to isolated
binaries?
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✤ New code TRES for (isolated coeval stellar hierarchical) triple 
evolution (Toonen+ 2016, Toonen+ in prep.)
✤ Will become publicly available

✤ Written in Astrophysical Multipurpose 
Software Environment 

✤ software framework astrophysical simulations 
✤ existing codes from different domains 

(stellar dynamics, stellar evolution, 
hydrodynamics and radiative transfer)

✤ easy coupling between the codes

✤ easy coupling to N-body code or detailed stellar evolution codes 

Code for Triple Evolution
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Figure 1. Several quantities of interest in the evolution of the first example system (Sect. 3.1). Shown as a function of time are a1, e1, β ≡ a2/a1, kam,i/Ti
and itot. In the plots in the first column of the first two rows the entire evolution is shown; the other plots correspond to the end of the primary core helium
burning phase, the primary AGB phase and start of the primary CO WD phase. Solid line: triple case; dashed line: binary case (where applicable). In the plot
of kam,i/Ti only the triple case is shown (the binary case is very similar); in this plot the solid line applies to the primary (i = 1) and the dashed line to the
secondary (i = 2). Note that the evolution is not fully sampled in all plots, causing several kinks (in particular in the plots for e1 and itot) – more detailed
calculations are performed internally in the ODE solver routine but are not shown here (cf. Sect. 2.3).

significant tidal friction because the tidal strength quantity is very
small (kam,i/Ti ∼ 10−18 s−1) as a consequence of the radiative en-
velopes in the MS stars. During the primary RGB phase the pri-
mary possesses a convective envelope (kam,1/T1 ∼ 10−8 s−1) but
e1 is not high enough to trigger significant tidal friction. However,
tidal friction does become effective during the primary AGB phase
starting at t ≈ 220.6Myr and circularizes the inner orbit during
the time span of five Kozai cycles, where significant orbital shrink-
age occurs at eccentricity maxima. Note that during this phase the

increase in the effectiveness of orbital shrinkage is due to the ex-
pansion of the primary from a radius of R1 ≈ 49R% to R1 ≈ 497R%
between t = 220Myr and t = 222.5Myr. Consequently a1 is re-
duced to a1 ≈ 7AU and the orbit is completely circularized. Note
that for complete circularization to occur the duration of the phase
in which kam,1/T1 is substantial must be sufficiently long compared
to the Kozai period PK (Eq. 1), which is the case for this example
system. In other cases of triple systems, however, PK can be much

Example: (inner) binary: M1 = 3.95, M2 =3.03Mo, a_in= 19.7 AU, e_in=0.23
tertiary star M3=2.73Mo on an orbit with a_out = 636 AU, e_out =0.82, i=116o
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Figure 1. Several quantities of interest in the evolution of the first example system (Sect. 3.1). Shown as a function of time are a1, e1, β ≡ a2/a1, kam,i/Ti
and itot. In the plots in the first column of the first two rows the entire evolution is shown; the other plots correspond to the end of the primary core helium
burning phase, the primary AGB phase and start of the primary CO WD phase. Solid line: triple case; dashed line: binary case (where applicable). In the plot
of kam,i/Ti only the triple case is shown (the binary case is very similar); in this plot the solid line applies to the primary (i = 1) and the dashed line to the
secondary (i = 2). Note that the evolution is not fully sampled in all plots, causing several kinks (in particular in the plots for e1 and itot) – more detailed
calculations are performed internally in the ODE solver routine but are not shown here (cf. Sect. 2.3).

significant tidal friction because the tidal strength quantity is very
small (kam,i/Ti ∼ 10−18 s−1) as a consequence of the radiative en-
velopes in the MS stars. During the primary RGB phase the pri-
mary possesses a convective envelope (kam,1/T1 ∼ 10−8 s−1) but
e1 is not high enough to trigger significant tidal friction. However,
tidal friction does become effective during the primary AGB phase
starting at t ≈ 220.6Myr and circularizes the inner orbit during
the time span of five Kozai cycles, where significant orbital shrink-
age occurs at eccentricity maxima. Note that during this phase the

increase in the effectiveness of orbital shrinkage is due to the ex-
pansion of the primary from a radius of R1 ≈ 49R% to R1 ≈ 497R%
between t = 220Myr and t = 222.5Myr. Consequently a1 is re-
duced to a1 ≈ 7AU and the orbit is completely circularized. Note
that for complete circularization to occur the duration of the phase
in which kam,1/T1 is substantial must be sufficiently long compared
to the Kozai period PK (Eq. 1), which is the case for this example
system. In other cases of triple systems, however, PK can be much

t/Gyr
lo

g 
(1

-e
)

. Put another way, some systems 
which one might think have no 
hope of merging in tH, actually 
merge in 
tH with a suitably placed tertiary
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✤ Monte Carlo method to generate  initial systems containing zero-age 
main-sequence stars

✤ 3 sets of distributions

uncorrelated binaries 1 uncorrelated binaries 2 Eggleton

m1

m2

m3

a

e thermal thermal thermal

i circular uniform [0,pi] circular uniform [0,pi] circular uniform [0,pi]

g uniform [-pi,pi] uniform [-pi,pi] uniform [-pi,pi]

fit of Hurley ea ‘00 to Lang ’92 fit of Hurley ea ‘00 to Lang ’92 fit of Hurley ea ‘00 to Lang ’92Ω

Initial population
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✤ Monte Carlo method to generate  initial systems containing zero-age 
main-sequence stars

✤ 3 sets of distributions

uncorrelated binaries 1 uncorrelated binaries 2 Eggleton

m1 Kroupa IMF (Kroupa ea ’93) Kroupa IMF (Kroupa ea ’93) Eggleton ’09

m2 flat in m2/m1 flat in m2/m1 Eggleton ‘09

m3 flat in m3/(m1+m2) flat in m3/(m1+m2) Eggleton ‘09

a flat in log a (Abt ’83) Tokovinin ‘14 (lognormal, mu = 1e5d, 
sigma=2.3)

Eggleton ‘09

e thermal thermal thermal

i circular uniform [0,pi] circular uniform [0,pi] circular uniform [0,pi]

g uniform [-pi,pi] uniform [-pi,pi] uniform [-pi,pi]

fit of Hurley ea ‘00 to Lang ’92 fit of Hurley ea ‘00 to Lang ’92 fit of Hurley ea ‘00 to Lang ’92Ω

Initial population
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✤ Uncorrelated binaries ✤ Eggleton ’09

✤ Mass ratio distribution

M2/M1
M3/M1
M3/(M1+M2)

q q

✤ Note: per definition m1>m2
✤ m1 => primary, m2 => secondary

Initial population
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✤ Uncorrelated binaries 1: 
Abt ’83 - flat in log a

✤ Eggleton ’09

✤ Distribution of orbital separation

a1
a2

✤ Uncorrelated binaries 2: 
Tokovinin ’14 - log 
normal periods

log(a/RSun)

log(a/RSun)

log(a/RSun)

Initial population
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Roche Lobe Overflow
✤ In the inner binary by the secondary

✤ after the primary has become a compact object
✤ special evolutionary channel 

✤ to form compact binaries without mass transfer (see also: Shappee & 
Thompson ‘13, Michaely & Perets ’14)

✤ How often does this happen in triples?
✤ a few in a 1000 systems for all models

✤ How eccentric is the orbit?
✤ Roughly half of systems: e_in~0
✤ Other half: e_in > 0.8

✤ Donor stars can be evolved or non-evolved stars

0.3-0.5%
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MIEK
MIEK - Mass-loss induced eccentric Kozai (Shappee & Thompson 2013)
 

✤ Mass-loss from the inner binary causes a transition from regular 
quadrupole Kozai behaviour to where the octupole becomes significant

✤ Standard example: 
m1=7MSun, m2=6.5MSun, m3=6Msun; a1=10AU, a2=250AU,  e1=0.1, 
e2=0.7, g1=0, g2=180, i=60
✤ Varying i, e1, e2, g1: 

✤ 2 up to 7% of systems go through MIEK (Shappee & Thompson 2013) 

✤ However... 
✤ Even if the inner binary was isolated, RLOF when a1<15AU
✤ Slightly wider orbits affected by Kozai-Lidov induced-RLOF and 

wind-induced dynamical instabilities

Shappee & Thompson (2013) 
studied the case of mass-
loss from a component in the inner 
binary, which leads
to a transition from a more regular 
Kozai-Lidov secular
behavior to the regime where 
octupole level perturba-
tions become significant, and the 
amplitude of eccentric-
ity changes become significant; a 

behavior 
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Solve set of first-order ordinary differential equation:

✤ As a function of semimajor-axis a, eccentricity e, mutual 

inclination i, argument of pericenter g, longitude of ascending 

node h, spin angular frequency 

Secular evolution

Ω

processes that are described are independent such that the individual
time derivative terms can be added linearly. In addition, in the
expressions for ˙g1,tide, ˙g1,rotate, ˙e1,TF, ˙a1,TF, ˙
i,TF and ˙θ we assume
coplanarity of spin and orbit at all times, even though Kozai cycles
in principle affect the relative orientations between the spin and
orbit angular momentum vectors and in turn a misalignment of
these vectors affects the Kozai cycles themselves (e.g. Correia et al.
2011).We justify this assumption by noting that for the majority of
systems that we study the orbital angular momenta of both inner and
outer orbits greatly exceed the spin angular momenta in magnitude,
therefore, the stellar spins cannot greatly affect the exchange of
angular momentum between both orbits.

S. Toonen et al.: The evolution of triple star-systems

2.2. Coeval stellar hierarchical triple dynamics




ȧ1 =
ȧ2 =
ė1 =
ė2 =
θ̇ =
ġ1 =
ġ2 =
ḣ1 =
Ω̇"1 =
Ω̇"2 =
Ω̇"3 =

(1)




ȧin = ȧin,GR + ȧin,T F + ȧin,wind + ȧin,MT ,
ȧout = ȧout,GR + ȧout,T F + ȧin,wind + ȧin,MT ,
ėin = ėin,S T D + ėin,GR + ėin,T F + ėin,rotate,
ėout = ėout,S T D + ėout,GR + ėout,T F + ėout,rotate,
θ̇ = −1

GinGout
[Ġin(Gin +Goutθ) + Ġout(Gout +Ginθ)],

ġin = ġin,S T D + ġin,GR + ġin,tides,
ġout = ġoutS T D + ġin,GR + ġout,tides,
ḣin = ḣin,S T D,
Ω̇1 = Ω̇1,T F + Ω̇1,I ,
Ω̇2 = Ω̇2,T F + Ω̇2,I ,
Ω̇3 = Ω̇3,T F + Ω̇3,I ,

(2)




ȧ1 = ȧ1,GR + ȧ1,T F + ȧ1,wind + ȧ1,MT ,
ȧ2 = ȧ2,GR + ȧ2,T F + ȧ2,wind + ȧ2,MT ,
ė1 = ė1,S T D + ė1,GR + ė1,T F ,
ė2 = ė2,S T D + ė2,GR + ė2,T F ,
θ̇ = −1

G1G2
[Ġ1(G1 +G2θ) + Ġ2(G2 +G1θ)],

ġ1 = ġ1,S T D + ġ1,GR + ġ1,tides + ġ1,rotate,
ġ2 = ġ2,S T D + ġ2,GR + ġ2,tides + ġ2,rotate,
ḣ1 = ḣ1,S T D,
Ω̇"1 = Ω̇"1,T F + Ω̇"1,I ,
Ω̇"2 = Ω̇"2,T F + Ω̇"2,I ,
Ω̇"3 = Ω̇"3,T F + Ω̇"3,I ,

(3)




ȧ1 =
ȧ2 =
ė1 = ė1,S T D
ė2 = ė2,S T D
θ̇ = −1

G1G2
[Ġ1(G1 +G2θ) + Ġ2(G2 +G1θ)]

ġ1 = ġ1,S T D
ġ2 = ġ2,S T D
ḣ1 = ḣ1,S T D,
Ω̇"1 =
Ω̇"2 =
Ω̇"3 =

(4)




ȧ1 = ȧ1,GR
ȧ2 = ȧ2,GR
ė1 = ė1,S T D + ė1,GR
ė2 = ė2,S T D + ė2,GR
θ̇ = −1

G1G2
[Ġ1(G1 +G2θ) + Ġ2(G2 +G1θ)],

ġ1 = ġ1,S T D + ġ1,GR
ġ2 = ġ2,S T D + ġ2,GR
ḣ1 = ḣ1,S T D,
Ω̇"1 =
Ω̇"2 =
Ω̇"3 =

(5)




ȧ1 = ȧ1,GR + ȧ1,T F
ȧ2 = ȧ2,GR + ȧ2,T F
ė1 = ė1,S T D + ė1,GR + ė1,T F ,
ė2 = ė2,S T D + ė2,GR + ė2,T F ,
θ̇ = −1

G1G2
[Ġ1(G1 +G2θ) + Ġ2(G2 +G1θ)],

ġ1 = ġ1,S T D + ġ1,GR + ġ1,tides,
ġ2 = ġ2,S T D + ġ2,GR + ġ2,tides,
ḣ1 = ḣ1,S T D,
Ω̇"1 = Ω̇"1,T F
Ω̇"2 = Ω̇"2,T F
Ω̇"3 = Ω̇"3,T F

(6)




ȧ1 = ȧ1,GR + ȧ1,T F + ȧ1,wind + ȧ1,MT ,
ȧ2 = ȧ2,GR + ȧ2,T F + ȧ2,wind + ȧ2,MT ,
ė1 = ė1,S T D + ė1,GR + ė1,T F ,
ė2 = ė2,S T D + ė2,GR + ė2,T F ,
θ̇ = −1

G1G2
[Ġ1(G1 +G2θ) + Ġ2(G2 +G1θ)],

ġ1 = ġ1,S T D + ġ1,GR + ġ1,tides,
ġ2 = ġ2,S T D + ġ2,GR + ġ2,tides,
ḣ1 = ḣ1,S T D,
Ω̇"1 = Ω̇"1,T F
Ω̇"2 = Ω̇"2,T F
Ω̇"3 = Ω̇"3,T F

(7)




ȧ1 = ȧ1,GR + ȧ1,T F + ȧ1,wind + ȧ1,MT ,
ȧ2 = ȧ2,GR + ȧ2,T F + ȧ2,wind + ȧ2,MT ,
ė1 = ė1,S T D + ė1,GR + ė1,T F ,
ė2 = ė2,S T D + ė2,GR + ė2,T F ,
θ̇ = −1

G1G2
[Ġ1(G1 +G2θ) + Ġ2(G2 +G1θ)],

ġ1 = ġ1,S T D + ġ1,GR + ġ1,tides,
ġ2 = ġ2,S T D + ġ2,GR + ġ2,tides,
ḣ1 = ḣ1,S T D,
Ω̇"1 = Ω̇"1,T F + Ω̇"1,MB + Ω̇"1,I ,
Ω̇"2 = Ω̇"2,T F + Ω̇"2,MB + Ω̇"2,I ,
Ω̇"3 = Ω̇"3,T F + Ω̇"3,MB + Ω̇"3,I ,

(8)

with θ ≡ cos(i), G denotes orbital angular momentum, I moment
of inertia,

MB = magnetic braking STD = secular Kozai cycles

2.3. Evolution of triples

examples of the evolution of triple systems

– kozai cycle: to show that we are taking non-regular dynamics
into account, and are moddeling this properly, find a system
that leads to mass transfer in the inner binary

– effect of stellar evolution: wind from inner and outer system
effect on orbit

– miek: mass-loss induced eccentric kozai, octupole term be-
comes important, maybe system that starts with fairly equal
masses, but due to wind, one evolves faster, becomes rem-
nant, e2¿ 0, M3 not small

– sefo: secular freeze-out (SEFO), m3 then loses mass, and
octupole becomes less important

2

With:
STD = secular three-body dynamics

(Harrington ‘68; Ford, Kozinsky & Rasio ‘00; 
Naoz ea ‘11)

GR include 1 & 2.5 PN (Peters ‘64, Blaes ea ’02)

TF = tidal friction (Hut '81)

tides (Smeyers & Willems '01)

rotate (Fabrycky & Tremaine 2002)

  = Moment of inertia

G orbital angular momentum
θ ≡ cos(i)
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BH-BH mergers
➡Enhanced occurence rate of mass transfer 
➡Enhanced formation rate of compact binaries
➡Enhanced merger rate of compact objects

✤ Antonini, Toonen & Hamers in prep.
✤ Preliminary rate: 0.3-1.2 per year per Gpc^3

✤

4 Antonini, Toonen, and Hamers

Fig. 2.— Distribution of relative inclination of outer to inner orbit for the BH triples formed in our models according to the secular
population synthesis code (black histograms), and for the triples which produce BH mergers (red histograms). The number of systems are
normalized by the total number of stable BH triples formed. This plot shows that the initial distribution of I is not isotropic and that
most merging BH binaries are produced in BH triples with initially high mutual inclinations.

TABLE 1

Results of the population synthesis models of massive triple stars.

Model natal kicks a2;max m3;min Nsim fraction fraction fraction �3BH �merge Γ
(103AU) (M⊙) disrupted mass transfer dyn. unstable (Gpc−3yr−1)

A1 0 20 0.1 75k 0.31 0.27 0.19 0.23 5× 10−3 1.2
A2 0 2 22 75k 0.14 0.43 0.22 0.21 7× 10−3 1.1
B1 Hobbs 20 0.1 25k 0.56 0.26 0.12 0.06 6× 10−3 0.4
B2 Hobbs 2 22 25k 0.36 0.41 0.17 0.06 1× 10−2 0.4
C1 Arzoumanian 20 0.1 25k 0.56 0.26 0.13 0.05 7× 10−3 0.4
C2 Arzoumanian 2 22 25k 0.35 0.42 0.17 0.06 5× 10−3 0.3

Models differ by their natal kick velocity distribution, adopted maximum value of separation, a2,max, and minimum mass, m3;min, of the
tertiary star. Nsim is the total number of stellar triples that were evolved for each model; �3BH is the fraction of systems that produce
stable BH triples; �merge is the fraction of the stable BH triples that lead to the merger of a BH binary; and Γ is the inferred BH binary

merger rate.

tion of a BH merger. The secular exchanges of angular
momentum (but not energy) among the inner binary and
the outer BH induce large fluctuations in the inner bi-
nary eccentricity and inclination. The orbit of the inner
binary, starting from an initial value of e1 = 0.65 and
I = 93◦.8, by ≈ 3×106yr has diffused to 1−e1 ≈ 1×10−4.
We find that the maximum orbital eccentricity of the
inner binary undergoes a random walk to most of the
phase space allowed by the total energy and angular mo-
mentum of the system. During the maximum of a LK
oscillation the binary enters the non-secular regime de-

fined by Equation (1). In this region the inner BHs can
be driven to a merger before general relativistic effects
suppress the secular forcing. At the end of the integra-
tion, GW radiation starts to dominate the binary evolu-
tion. Subsequently, the BH binary starts to circularize,
decouples from the tertiary companion, and finally en-
ters the 10Hz aLIGO frequency band with e1 = 0.4 and
a1 = 1.5× 10−5AU.

4.1. Properties

6 Antonini, Toonen, and Hamers

Fig. 4.— Properties of merging BH binaries. Distributions are normalized by the total number of mergers. The left panel gives the
distribution of eccentricities at the moment the binaries first enter the aLIGO frequency band. The middle panel shows the distribution
of total mass, and chirp mass of the merging BHs. The right panel gives their time delay distribution, i.e., the time from formation to
coalescence. Red histograms and curves are for models B1, B2, C1 and C2 combinaed; black is for models A1 and A2.

strongly quenched by relativistic precession for larger val-
ues of a2/a1 (e.g., Blaes et al. 2002).
Figure 3 gives the distribution of the semi-major axes

a1 and a2 at the moment the triple BHs are formed and
for the subset of the BH triples that lead to merging
binaries. These plots show that our mergers are produced
in BH triples with a1 � 100AU, and a2 � 1000AU. The
left panels of Figure 3 give the distribution of the ratio
a2(1 − e2)/a1. This latter quantity parametrizes how
well the dynamics of the system can be described by the
standard secular equations of motion. The non-secular
region in Figure 3 was computed from Equation (1) by
requiring the inner BH binary to reach an eccentricity
large enough for GW radiation to dominate its evolution.
One finds that the inner binary can enter the non-secular
regime if (Antonini et al. 2016):

a2(1− e2)

a1
� 2.5

�
m3

m1 +m2

�1/3 � a

Ddiss

�1/6

, (3)

with Ddiss the typical dissipation scale. Most of our bi-
naries are driven to a merger from an initial distance
a1 � 100AU. Adopting Ddiss = 109cm as a conservative
dissipation scale and assuming equal mass components,
we find that the condition Equation (1) is met before
GW radiation dominates the evolution of the inner bi-
nary if a2(1− e2)/a1 � 20. We stress that not all triples
that are within the blue vertical lines in Figure 3 en-
ter the non-secular regime, but only those that achieve
an eccentricity e1 � ecrit. The red histograms in Fig-
ure 3 represent the binaries that merge in our models.
Evidently, most merging binaries in our simulations are
expected to evolve through the non-secular dynamical
regime defined by Equation (1); this happened for 132 of
the 177 total mergers we found.
The left panel of Figure 4 displays the distribution of

eccentricities at the moment the peak GW frequency of
the binaries becomes larger than the 10Hz aLIGO fre-
quency band. Eccentric binaries emit a GW signal with
a broad spectrum of frequencies; we compute a proxy
for the GW frequency of our merging binaries as the fre-
quency corresponding to the harmonic which leads to the

maximal emission of GW radiation (Wen 2003):

fGW =

�
G(m1 +m2)

π

(1 + e1)
1.195

[a1 (1− e2
1
)]
1.5 . (4)

About 3% of all merging BH binaries in our models enter
the 10Hz window with an extremely high eccentricity
(1− e1) � 10−6, while ≈ 90% of them have eccentricities
� 0.1 at 10Hz.
In Figure 5, we compare the eccentricity distribution

at fGW = 10Hz of our merging BH binaries to those
formed in star clusters and from field binaries. These two
latter distributions were taken from Figure 3 of Breivik
et al. (2016). While models field and cluster predict
similar eccentricity distributions (e.g., Nishizawa et al.
2017), the eccentricity of merging BH binaries from field
triples appears to be uniquely biased towards high val-
ues. We conclude that eccentricity measurements alone
could be potentially used to discriminate binaries formed
through the evolution of isolated massive triple stars.
However, the high eccentricities found in our models also
imply that a fraction of these binaries could emit their
maximum power at frequencies much higher than the
frequency window of the planned Laser Interferometer
Space Antenna (LISA; fGW ≈ [10−3, 0.1] Hz). As ar-
gued in Chen & Amaro-Seoane (2017), binaries that en-
ter the aLIGO band with e1 � 5× 10−3 could be harder
to detect with instruments like LISA. Of the 177 merging
binaries in our simulations, 69 (137) have eccentricities
higher than 0.005 (0.001) and could therefore be harder
to detect at lower frequencies.
In the middle panel of Figure 4, we show the dis-

tribution of the total mass of the merging binaries, as
well as the distribution of their chirp mass, Mchirp =
(m1m2)3/5/(m1+m2)1/5. Our merging binaries have to-
tal masses in the range [13M⊙, 20M⊙], and a chirp mass
distribution that peaks around ≈ 7M⊙. The merging
binaries in models with a non-zero natal kick appear to
have larger masses when compared to the models with-
out birth kicks. This is expected: given our assumption
of momentum-conserving kicks, higher mass BHs receive
in average lower velocity kicks and are therefore more
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Figure 1. Several quantities of interest in the evolution of the first example system (Sect. 3.1). Shown as a function of time are a1, e1, β ≡ a2/a1, kam,i/Ti
and itot. In the plots in the first column of the first two rows the entire evolution is shown; the other plots correspond to the end of the primary core helium
burning phase, the primary AGB phase and start of the primary CO WD phase. Solid line: triple case; dashed line: binary case (where applicable). In the plot
of kam,i/Ti only the triple case is shown (the binary case is very similar); in this plot the solid line applies to the primary (i = 1) and the dashed line to the
secondary (i = 2). Note that the evolution is not fully sampled in all plots, causing several kinks (in particular in the plots for e1 and itot) – more detailed
calculations are performed internally in the ODE solver routine but are not shown here (cf. Sect. 2.3).

significant tidal friction because the tidal strength quantity is very
small (kam,i/Ti ∼ 10−18 s−1) as a consequence of the radiative en-
velopes in the MS stars. During the primary RGB phase the pri-
mary possesses a convective envelope (kam,1/T1 ∼ 10−8 s−1) but
e1 is not high enough to trigger significant tidal friction. However,
tidal friction does become effective during the primary AGB phase
starting at t ≈ 220.6Myr and circularizes the inner orbit during
the time span of five Kozai cycles, where significant orbital shrink-
age occurs at eccentricity maxima. Note that during this phase the

increase in the effectiveness of orbital shrinkage is due to the ex-
pansion of the primary from a radius of R1 ≈ 49R% to R1 ≈ 497R%
between t = 220Myr and t = 222.5Myr. Consequently a1 is re-
duced to a1 ≈ 7AU and the orbit is completely circularized. Note
that for complete circularization to occur the duration of the phase
in which kam,1/T1 is substantial must be sufficiently long compared
to the Kozai period PK (Eq. 1), which is the case for this example
system. In other cases of triple systems, however, PK can be much

Example: (inner) binary: M1 = 3.95, M2 =3.03Mo, a_in= 19.7 AU, e_in=0.23
tertiary star M3=2.73Mo on an orbit with a_out = 636 AU, e_out =0.82, i=116o

t/Gyr
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✤ Kozai-Lidov cycles relevant for 90% of triples
✤ 1.5x more often Roche lobe overflow compared to binaries
✤ 40% of Roche lobe overflow in an eccentric orbit

Interacting regime

t/Gyr

ref: Toonen, Hamers, Portegies Zwart in prep.
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Figure 1. Several quantities of interest in the evolution of the first example system (Sect. 3.1). Shown as a function of time are a1, e1, β ≡ a2/a1, kam,i/Ti
and itot. In the plots in the first column of the first two rows the entire evolution is shown; the other plots correspond to the end of the primary core helium
burning phase, the primary AGB phase and start of the primary CO WD phase. Solid line: triple case; dashed line: binary case (where applicable). In the plot
of kam,i/Ti only the triple case is shown (the binary case is very similar); in this plot the solid line applies to the primary (i = 1) and the dashed line to the
secondary (i = 2). Note that the evolution is not fully sampled in all plots, causing several kinks (in particular in the plots for e1 and itot) – more detailed
calculations are performed internally in the ODE solver routine but are not shown here (cf. Sect. 2.3).

significant tidal friction because the tidal strength quantity is very
small (kam,i/Ti ∼ 10−18 s−1) as a consequence of the radiative en-
velopes in the MS stars. During the primary RGB phase the pri-
mary possesses a convective envelope (kam,1/T1 ∼ 10−8 s−1) but
e1 is not high enough to trigger significant tidal friction. However,
tidal friction does become effective during the primary AGB phase
starting at t ≈ 220.6Myr and circularizes the inner orbit during
the time span of five Kozai cycles, where significant orbital shrink-
age occurs at eccentricity maxima. Note that during this phase the

increase in the effectiveness of orbital shrinkage is due to the ex-
pansion of the primary from a radius of R1 ≈ 49R% to R1 ≈ 497R%
between t = 220Myr and t = 222.5Myr. Consequently a1 is re-
duced to a1 ≈ 7AU and the orbit is completely circularized. Note
that for complete circularization to occur the duration of the phase
in which kam,1/T1 is substantial must be sufficiently long compared
to the Kozai period PK (Eq. 1), which is the case for this example
system. In other cases of triple systems, however, PK can be much

Example: (inner) binary: M1 = 3.95, M2 =3.03Mo, a_in= 19.7 AU, e_in=0.23
tertiary star M3=2.73Mo on an orbit with a_out = 636 AU, e_out =0.82, i=116o
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Figure 1. Several quantities of interest in the evolution of the first example system (Sect. 3.1). Shown as a function of time are a1, e1, β ≡ a2/a1, kam,i/Ti
and itot. In the plots in the first column of the first two rows the entire evolution is shown; the other plots correspond to the end of the primary core helium
burning phase, the primary AGB phase and start of the primary CO WD phase. Solid line: triple case; dashed line: binary case (where applicable). In the plot
of kam,i/Ti only the triple case is shown (the binary case is very similar); in this plot the solid line applies to the primary (i = 1) and the dashed line to the
secondary (i = 2). Note that the evolution is not fully sampled in all plots, causing several kinks (in particular in the plots for e1 and itot) – more detailed
calculations are performed internally in the ODE solver routine but are not shown here (cf. Sect. 2.3).

significant tidal friction because the tidal strength quantity is very
small (kam,i/Ti ∼ 10−18 s−1) as a consequence of the radiative en-
velopes in the MS stars. During the primary RGB phase the pri-
mary possesses a convective envelope (kam,1/T1 ∼ 10−8 s−1) but
e1 is not high enough to trigger significant tidal friction. However,
tidal friction does become effective during the primary AGB phase
starting at t ≈ 220.6Myr and circularizes the inner orbit during
the time span of five Kozai cycles, where significant orbital shrink-
age occurs at eccentricity maxima. Note that during this phase the

increase in the effectiveness of orbital shrinkage is due to the ex-
pansion of the primary from a radius of R1 ≈ 49R% to R1 ≈ 497R%
between t = 220Myr and t = 222.5Myr. Consequently a1 is re-
duced to a1 ≈ 7AU and the orbit is completely circularized. Note
that for complete circularization to occur the duration of the phase
in which kam,1/T1 is substantial must be sufficiently long compared
to the Kozai period PK (Eq. 1), which is the case for this example
system. In other cases of triple systems, however, PK can be much

t/Gyr
lo

g 
(1

-e
)
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Triples
✤ Fairly common

✤ Evolution: Three body dynamics + stellar evolution 
✤ Rich interacting regime (Shappee ea 2013, Hamers ea 2013, Michaely ea 2014)

✤ TRES: self-consistent treatment of triple evolution (Toonen et al. in prep.)

✤ judge the importance of this interacting regime 
✤ curious evolutionary products from triples

Triple fraction Binary fraction

Low-mass stars 10-15% 40-50% 

High-mass stars ~50 >70%

Refs Tokovinin ’08, ’14, 
Remage Evans ’11

Raghavan ea ‘08, 
Duchene & Kraus ‘13)
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✤ Monte Carlo method to generate  initial systems containing zero-age 
main-sequence stars

✤ 3 sets of distributions

uncorrelated binaries 1 uncorrelated binaries 2 Eggleton

m1

m2

m3

a

e thermal thermal thermal

i circular uniform [0,pi] circular uniform [0,pi] circular uniform [0,pi]

g uniform [-pi,pi] uniform [-pi,pi] uniform [-pi,pi]

fit of Hurley ea ‘00 to Lang ’92 fit of Hurley ea ‘00 to Lang ’92 fit of Hurley ea ‘00 to Lang ’92Ω

Initial population
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✤ Monte Carlo method to generate  initial systems containing zero-age 
main-sequence stars

✤ 3 sets of distributions

uncorrelated binaries 1 uncorrelated binaries 2 Eggleton

m1 Kroupa IMF (Kroupa ea ’93) Kroupa IMF (Kroupa ea ’93) Eggleton ’09

m2 flat in m2/m1 flat in m2/m1 Eggleton ‘09

m3 flat in m3/(m1+m2) flat in m3/(m1+m2) Eggleton ‘09

a flat in log a (Abt ’83) Tokovinin ‘14 (lognormal, mu = 1e5d, 
sigma=2.3)

Eggleton ‘09

e thermal thermal thermal

i circular uniform [0,pi] circular uniform [0,pi] circular uniform [0,pi]

g uniform [-pi,pi] uniform [-pi,pi] uniform [-pi,pi]

fit of Hurley ea ‘00 to Lang ’92 fit of Hurley ea ‘00 to Lang ’92 fit of Hurley ea ‘00 to Lang ’92Ω

Initial population
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✤ Uncorrelated binaries ✤ Eggleton ’09

✤ Mass ratio distribution

M2/M1
M3/M1
M3/(M1+M2)

q q

✤ Note: per definition m1>m2
✤ m1 => primary, m2 => secondary

Initial population
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✤ Uncorrelated binaries 1: 
Abt ’83 - flat in log a

✤ Eggleton ’09

✤ Distribution of orbital separation

a1
a2

✤ Uncorrelated binaries 2: 
Tokovinin ’14 - log 
normal periods

log(a/RSun)

log(a/RSun)

log(a/RSun)

Initial population
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Binary population synthesis

WD+MS

M1,wd (Msun)

Se
pa

ra
tio

n 
(R

su
n)
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Binary population synthesis

✤ Initial population WDMS

progenitors of WD+MS

WD+MS

Se
pa

ra
tio

n 
(R

su
n)

Se
pa

ra
tio

n 
(R

su
n)

M1,zams (Msun)

M1,wd (Msun)
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Binary population synthesis

✤ Initial population WDMS

No interaction
Stable mass transfer
Common-Envelope

progenitors of WD+MS

WD+MS

Se
pa

ra
tio

n 
(R

su
n)

Se
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ra
tio

n 
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M1,zams (Msun)

M1,wd (Msun)
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Binary population synthesis

✤ Initial population WDMS

No contact
MS donor
HG donor
GB donor
AGB donor

progenitors of WD+MS

WD+MS

Se
pa

ra
tio

n 
(R

su
n)

Se
pa

ra
tio

n 
(R

su
n)

M1,zams (Msun)

M1,wd (Msun)
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PopCORN

✤ When input assumptions are equalized: different binary population 
synthesis codes give similar populations. 

✤ Differences are not caused by numerical differences, but can 
be explained by differences in the input physics

• Population synthesis used extensively for 
binaries (e.g. Eggleton ’89, de Kool ea ’92, Willems & Kolb ’94, Nelemans ea ’01, 
Han ea ’02, Belczynski ea ’08, Ruiter ea ’12, Mennekens ea ’13, Claeys ea ’14, Toonen 
ea ‘12,13,14)

✤ Comparison of codes for binary population 
synthesis 

ref: Toonen, Claeys, Mennekens, Ruiter 2014

see also: www.astro.ru.nl/~silviato/popcorn
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WD + non-degenerate companion

Similar simulated populations

Mwd (Msun)

Binary_c                                                                                  

lo
g 

a 
(R

su
n)

SeBa                       StarTrack                              
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WD + non-degenerate companion

Similar simulated populations

Mwd (Msun)

Binary_c                                                                                  

lo
g 

a 
(R

su
n)

SeBa                       StarTrack                              

No interaction
Common-Envelope
Stable mass transfer

maandag 3 juli 2017



WD + non-degenerate companion

Similar simulated populations

Mwd (Msun)

Binary_c                                                                                  

lo
g 

a 
(R

su
n)

SeBa                       StarTrack                              

No interaction
Common-Envelope
Stable mass transfer
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WD + non-degenerate companion

Similar simulated populations

Mwd (Msun)

Binary_c                                                                                  

lo
g 

a 
(R

su
n)

SeBa                       StarTrack                              

No interaction
Common-Envelope
Stable mass transfer
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Mwd (Msun)Mwd (Msun)

(for M1,i > 3 Msun)

Binary_c                                                                                  Brussels code                       
lo

g 
a 

(R
su

n)

StarTrack                             SeBa                              

lo
g 

a 
(R

su
n)
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Mwd (Msun)Mwd (Msun)

(for M1,i > 3 Msun)

Binary_c                                                                                  Brussels code                       
lo

g 
a 

(R
su

n)

StarTrack                             SeBa                              

lo
g 

a 
(R

su
n)

No contact

Common-
Envelope

Stable mass 
transfer
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Double white dwarfs

Similar simulated populations

Mwd (Msun)

Binary_c                                                                                  SeBa                       

lo
g 

a 
(R

su
n)

StarTrack                              
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Double white dwarfs

Similar simulated populations

Mwd (Msun)

Binary_c                                                                                  SeBa                       

lo
g 

a 
(R

su
n)

StarTrack                              

No interaction
RLOF 
Single-degenerate channel
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Triples
New code for the evolution of coeval hierarchical stellar triples

Combines:

✤ Stellar evolution

✤ Using SeBa (Portegies Zwart & Verbunt 1996, Nelemans et al. 2001, Toonen et al. 2012, 2013)

✤ Tracking realistic mass and radius as a function of time

✤ Secular hierarchical triple dynamics

✤ Based on Hamers et al. 2013

✤ in which the orbit-averaged equations of motion are solved 
numerically 

✤ Simulate consistently stellar evolution + tides + Kozai-Lidov

✤ including mass transfer, supernova kicks

 secular perturbations of a
third body (averaged over the inner and 
outer Keplerian orbits
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S. Toonen et al.: The evolution of triple star-systems

2.2. Coeval stellar hierarchical triple dynamics




ȧ1 =
ȧ2 =
ė1 =
ė2 =
θ̇ =
ġ1 =
ġ2 =
ḣ1 =
Ω̇"1 =
Ω̇"2 =
Ω̇"3 =

(1)




ȧin = ȧin,GR + ȧin,T F + ȧin,wind + ȧin,MT ,
ȧout = ȧout,GR + ȧout,T F + ȧin,wind + ȧin,MT ,
ėin = ėin,S T D + ėin,GR + ėin,T F + ėin,rotate,
ėout = ėout,S T D + ėout,GR + ėout,T F + ėout,rotate,
θ̇ = −1

GinGout
[Ġin(Gin +Goutθ) + Ġout(Gout +Ginθ)],

ġin = ġin,S T D + ġin,GR + ġin,tides,
ġout = ġoutS T D + ġin,GR + ġout,tides,
ḣin = ḣin,S T D,
Ω̇1 = Ω̇1,T F + Ω̇1,I ,
Ω̇2 = Ω̇2,T F + Ω̇2,I ,
Ω̇3 = Ω̇3,T F + Ω̇3,I ,

(2)




ȧ1 = ȧ1,GR + ȧ1,T F + ȧ1,wind + ȧ1,MT ,
ȧ2 = ȧ2,GR + ȧ2,T F + ȧ2,wind + ȧ2,MT ,
ė1 = ė1,S T D + ė1,GR + ė1,T F ,
ė2 = ė2,S T D + ė2,GR + ė2,T F ,
θ̇ = −1

G1G2
[Ġ1(G1 +G2θ) + Ġ2(G2 +G1θ)],

ġ1 = ġ1,S T D + ġ1,GR + ġ1,tides + ġ1,rotate,
ġ2 = ġ2,S T D + ġ2,GR + ġ2,tides + ġ2,rotate,
ḣ1 = ḣ1,S T D,
Ω̇"1 = Ω̇"1,T F + Ω̇"1,I ,
Ω̇"2 = Ω̇"2,T F + Ω̇"2,I ,
Ω̇"3 = Ω̇"3,T F + Ω̇"3,I ,

(3)




ȧ1 =
ȧ2 =
ė1 = ė1,S T D
ė2 = ė2,S T D
θ̇ = −1

G1G2
[Ġ1(G1 +G2θ) + Ġ2(G2 +G1θ)]

ġ1 = ġ1,S T D
ġ2 = ġ2,S T D
ḣ1 = ḣ1,S T D,
Ω̇"1 =
Ω̇"2 =
Ω̇"3 =

(4)




ȧ1 = ȧ1,GR
ȧ2 = ȧ2,GR
ė1 = ė1,S T D + ė1,GR
ė2 = ė2,S T D + ė2,GR
θ̇ = −1

G1G2
[Ġ1(G1 +G2θ) + Ġ2(G2 +G1θ)],

ġ1 = ġ1,S T D + ġ1,GR
ġ2 = ġ2,S T D + ġ2,GR
ḣ1 = ḣ1,S T D,
Ω̇"1 =
Ω̇"2 =
Ω̇"3 =

(5)




ȧ1 = ȧ1,GR + ȧ1,T F
ȧ2 = ȧ2,GR + ȧ2,T F
ė1 = ė1,S T D + ė1,GR + ė1,T F ,
ė2 = ė2,S T D + ė2,GR + ė2,T F ,
θ̇ = −1

G1G2
[Ġ1(G1 +G2θ) + Ġ2(G2 +G1θ)],

ġ1 = ġ1,S T D + ġ1,GR + ġ1,tides,
ġ2 = ġ2,S T D + ġ2,GR + ġ2,tides,
ḣ1 = ḣ1,S T D,
Ω̇"1 = Ω̇"1,T F
Ω̇"2 = Ω̇"2,T F
Ω̇"3 = Ω̇"3,T F

(6)




ȧ1 = ȧ1,GR + ȧ1,T F + ȧ1,wind + ȧ1,MT ,
ȧ2 = ȧ2,GR + ȧ2,T F + ȧ2,wind + ȧ2,MT ,
ė1 = ė1,S T D + ė1,GR + ė1,T F ,
ė2 = ė2,S T D + ė2,GR + ė2,T F ,
θ̇ = −1

G1G2
[Ġ1(G1 +G2θ) + Ġ2(G2 +G1θ)],

ġ1 = ġ1,S T D + ġ1,GR + ġ1,tides,
ġ2 = ġ2,S T D + ġ2,GR + ġ2,tides,
ḣ1 = ḣ1,S T D,
Ω̇"1 = Ω̇"1,T F
Ω̇"2 = Ω̇"2,T F
Ω̇"3 = Ω̇"3,T F

(7)




ȧ1 = ȧ1,GR + ȧ1,T F + ȧ1,wind + ȧ1,MT ,
ȧ2 = ȧ2,GR + ȧ2,T F + ȧ2,wind + ȧ2,MT ,
ė1 = ė1,S T D + ė1,GR + ė1,T F ,
ė2 = ė2,S T D + ė2,GR + ė2,T F ,
θ̇ = −1

G1G2
[Ġ1(G1 +G2θ) + Ġ2(G2 +G1θ)],

ġ1 = ġ1,S T D + ġ1,GR + ġ1,tides,
ġ2 = ġ2,S T D + ġ2,GR + ġ2,tides,
ḣ1 = ḣ1,S T D,
Ω̇"1 = Ω̇"1,T F + Ω̇"1,MB + Ω̇"1,I ,
Ω̇"2 = Ω̇"2,T F + Ω̇"2,MB + Ω̇"2,I ,
Ω̇"3 = Ω̇"3,T F + Ω̇"3,MB + Ω̇"3,I ,

(8)

with θ ≡ cos(i), G denotes orbital angular momentum, I moment
of inertia,

MB = magnetic braking STD = secular Kozai cycles

2.3. Evolution of triples

examples of the evolution of triple systems

– kozai cycle: to show that we are taking non-regular dynamics
into account, and are moddeling this properly, find a system
that leads to mass transfer in the inner binary

– effect of stellar evolution: wind from inner and outer system
effect on orbit

– miek: mass-loss induced eccentric kozai, octupole term be-
comes important, maybe system that starts with fairly equal
masses, but due to wind, one evolves faster, becomes rem-
nant, e2¿ 0, M3 not small

– sefo: secular freeze-out (SEFO), m3 then loses mass, and
octupole becomes less important

2

Secular evolution

With:
STD = secular three-body dynamics

(Harrington ‘68; Ford, Kozinsky & Rasio ‘00; 
Naoz ea ‘11)

GR include 1 & 2.5 PN (Peters ‘64, Blaes ea ’02)

TF = tidal friction (Hut '81)

tides (Smeyers & Willems '01)

rotate (Fabrycky & Tremaine 2002)

  = Moment of inertia

G orbital angular momentum

İ

θ ≡ cos(i)

Solve set of first-order ordinary differential equation:

✤ As a function of semimajor-axis a, eccentricity e, mutual 

inclination i, argument of pericenter g, longitude of ascending 

node h, spin angular frequency 

processes that are described are independent such that the individual
time derivative terms can be added linearly. In addition, in the
expressions for ˙g1,tide, ˙g1,rotate, ˙e1,TF, ˙a1,TF, ˙
i,TF and ˙θ we assume
coplanarity of spin and orbit at all times, even though Kozai cycles
in principle affect the relative orientations between the spin and
orbit angular momentum vectors and in turn a misalignment of
these vectors affects the Kozai cycles themselves (e.g. Correia et al.
2011).We justify this assumption by noting that for the majority of
systems that we study the orbital angular momenta of both inner and
outer orbits greatly exceed the spin angular momenta in magnitude,
therefore, the stellar spins cannot greatly affect the exchange of
angular momentum between both orbits.
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Coupling of the codes:
Astrophysical Multipurpose Software Environment 
✤ software framework astrophysical simulations, 
✤ existing codes from different domains (stellar 

dynamics, stellar evolution, hydrodynamics and 
radiative transfer)

✤ easy coupling between the codes
✤ easy coupling to N-body code 
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Dynamical instability
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Inner RLOF donor type
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Distribution of Eggleton ’09
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Binary population synthesis 
• Simulate the evolution of a large number of binaries
• From ZAMS to remnant formation (or any desired evolutionary 

phase)
• At each timestep for each binary take into account relevant physics, -

=> Combination of stellar evolution & dynamics

• Consensus on the principles of binary evolution 
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Binary population synthesis 

progenitors of WD+MS
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• Consensus on the principles of binary evolution
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Evolutionary channels

No interaction
Stable mass transfer
Common-Envelope
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Population synthesis 
• Population synthesis used extensively for binaries (e.g. Eggleton ’89, de Kool ea ’92, 

Willems & Kolb ’94, Nelemans ea ’01, Han ea ’02, Belczynski ea ’08, Ruiter ea ’12, Mennekens ea ’13, Claeys ea ’14, Toonen 
ea ‘12,13,14)

• Studying e.g. supernova type Ia progenitors, WD-MS stars, 
cataclysmic variables, double white dwarf, X-ray binaries, SdB stars, 
gravitational wave sources

• Consensus on the principles of binary evolution
• Many questions remain, e.g. regarding mass transfer stability, 

unstable mass transfer (common-envelope phase), accretion
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Dynamical instability
Triple evolution dynamical instability (e.g. Kiseleva ea ’94, Iben & Tutukov ’99, Perets & Kratter ‘11)

Through wind mass loss:
Example: M1 = 7, M2 =1, M3=6MSun, a1= 1e4, a2 = 5e5RSun, e1=0.1, 
e2 =0.8, i=0, g1=0.1, g2=0.5

t/Myr t/Myr

M
/M

Su
n

R/
RS

un

Stellar mass Stellar radii

inner orbit: primary star 1
inner orbit: secondary star 2
outer companion star3
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✤ Double degenerate (Iben & Tutukov ’84)

✤ Single degenerate (Whelan & Iben ’73)

Supernova Type Ia progenitors

Classical progenitor systems:

Triples as SNIa progenitors (Katz & Dong 2012, Hamers ea 2013)

Rate (per 104 Mo)Rate (per 104 Mo)

Observed (Maoz ea 
2011, 2012, Perrett ea 2012, 

Graur ea 2012)
4-23 

Triples >0.02

Single 
degenerate <0.001-1.3

Double 
degenerate 2-3.3
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Roche Lobe Overflow
✤ In the inner binary by the primary

✤ How often does this happen in triples?
✤ 63% for model uncorrelated binaries I
✤ 72% for model uncorrelated binaries II (Tokovinin)
✤ 69% for model Eggleton

✤ How does this compare to isolated binary evolution?
✤ Educated guess: ~40%

✤ Assuming RLOF occurs when a(1-e^2)<1e3|units.RSun (see 
Toonen et al. 2014) & uncorrelated binaries I (Abt)

✤ Detailed comparison: to be continued....

maandag 3 juli 2017



Roche Lobe Overflow
✤ Mass transfer in eccentric orbit

✤ How often does this happen in triples?
✤ 38% for model uncorrelated binaries I
✤ 42% for model uncorrelated binaries II (Tokovinin)
✤ 38% for model Eggleton

✤ % of total number RLOF in simulation

e_in

initially
at RLOF

less evolved stars more evolved stars

Type of donor star
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Roche Lobe Overflow
✤ In the inner binary by the secondary

✤ after the primary has become a compact object
✤ special evolutionary channel 

✤ to form compact binaries without mass transfer (see also: Shappee & 
Thompson ‘13, Michaely & Perets ’14)

✤ How often does this happen in triples?
✤ a few in a 1000 systems for all models

✤ How eccentric is the orbit?
✤ Roughly half of systems: e_in~0
✤ Other half: e_in > 0.8

✤ Donor stars can be evolved or non-evolved stars

0.3-0.5%
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MIEK
MIEK - Mass-loss induced eccentric Kozai (Shappee & Thompson 2013)
 

✤ Mass-loss from the inner binary causes a transition from regular 
quadrupole Kozai behaviour to where the octupole becomes significant

✤ Standard example: 
m1=7MSun, m2=6.5MSun, m3=6Msun; a1=10AU, a2=250AU,  e1=0.1, 
e2=0.7, g1=0, g2=180, i=60
✤ Varying i, e1, e2, g1: 

✤ 2 up to 7% of systems go through MIEK (Shappee & Thompson 2013) 

✤ However... 
✤ Even if the inner binary was isolated, RLOF when a1<15AU
✤ Slightly wider orbits affected by Kozai-Lidov induced-RLOF and 

wind-induced dynamical instabilities

Shappee & Thompson (2013) 
studied the case of mass-
loss from a component in the inner 
binary, which leads
to a transition from a more regular 
Kozai-Lidov secular
behavior to the regime where 
octupole level perturba-
tions become significant, and the 
amplitude of eccentric-
ity changes become significant; a 

behavior 
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Roche Lobe Overflow
✤ In the outer binary from the outer companion

✤ How often does this happen in triples?
✤ 0.5% for model uncorrelated binaries I
✤ 1% for model uncorrelated binaries II (Tokovinin)
✤ 0.9% for model Eggleton  

✤ In good agreement with de Vries ea ’13
✤ For 1% of triples in the Tokovinin catalogue (full primary mass 

range), the outer companion initiates RLOF before any of the 
inner stars leave the main sequence

✤ Predominantly evolved (AGB) donor stars
✤ From SPH simulations for ξ Tau and HD97131 
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Dynamical instability
Triple evolution dynamical instability (e.g. Kiseleva ea ’94, Iben & Tutukov ’99, Perets & Kratter ‘11)

Through wind mass loss:
Example: M1 = 7, M2 =1, M3=6MSun, a1= 1e4, a2 = 5e5RSun, e1=0.1, 
e2 =0.8, i=0, g1=0.1, g2=0.5

t/Myr t/Myr

M
/M

Su
n

lo
g(

a/
RS

un
)

Stellar mass Semimajor-axis 

inner orbit: primary star 1
inner orbit: secondary star 2
outer companion star3

a1
a2
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Dynamical instability
Triple evolution dynamical instability (e.g. Kiseleva ea ’94, Iben & Tutukov ’99, Perets & Kratter ‘11)

Through wind mass loss:
Example: M1 = 7, M2 =1, M3=6MSun, a1= 1e4, a2 = 5e5RSun, e1=0.1, 
e2 =0.8, i=0, g1=0.1, g2=0.5

t/Myr t/Myr

M
/M

Su
n

a2
/a

1

Stellar mass Ratio of outer and inner semimajor-axis 

inner orbit: primary star 1
inner orbit: secondary star 2
outer companion star3
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Dynamical instability
Triple evolution dynamical instability (e.g. Kiseleva ea ’94, Iben & Tutukov ’99, Perets & Kratter ‘11)

Through wind mass loss:
Example: M1 = 7, M2 =1, M3=6MSun, a1= 1e4, a2 = 5e5RSun, e1=0.1, 
e2 =0.8, i=0, g1=0.1, g2=0.5

t/Myr

a2
/a

1

Ratio of outer and inner semimajor-axis 

Effect of wind mass-loss in inner 
binary:
✤ orbits widen
✤ inner orbit widens more
✤ orbits come closer to each other
✤ possible dynamical instability
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Dynamical instability
How often does this happen in triples?

✤ 3.6% for model uncorrelated binaries I
✤ 2.2% for model uncorrelated binaries II (Tokovinin)
✤ 2.4% for model Eggleton

Stability criterion of Mardling & Aarseth ’01

we demonstrate that the rate of 
stellar collisions due to the TEDI
is approximately 10−4  yr−1  per 
Milky-Way Galaxy, which is nearly 
30 times higher than the total
collision rate due to random 
encounters in the Galactic globular

 Moreover, we find that the
dominant type of stellar collisions is 
qualitatively different; most collisions 
involve asymptotic giant
branch stars, rather than main 
sequence, or slightly evolved stars, 
which dominate collisions in globular
clusters.

e_out

a_
ou

t/
a_

in

In the case of MS destabilization the triple system is initially
marginally stable (i.e. only just satisfies β > βcrit; cf. Section 2.3)
but due to octupole-order terms of the STD, which are important
since β is (very) small and/or e2 is high, e2 varies periodically until
it reaches a value high enough such that β ≤ βcrit, i.e. a triple
destabilization. The time when this occurs is determined by the
Kozai period PK. Similarly to the MS mergers, this occurs early
in the evolution with most (90 per cent) destabilizations occurring
within 10 per cent of the primary MS lifetime (cf. Fig. 7).
In the other cases destabilization is triggered by mass loss in
the inner orbit which, if fast and isotropic, acts to decrease β (i.e.
the same mechanism discussed in the context of eccentric compact
object mergers in Section 5.1) to a point where β ≤ βcrit. This
happens when the primary loses a significant amount of mass as
it evolves from the AGB phase to a WD and similarly when this
happens to the secondary. In a small number of cases both inner
binary components are CO WDs when the instability occurs and
since there exists a finite probability of collision in the triple evolution
dynamical instability (approximately 0.1 as found by Perets
& Kratter 2012) this could potentially lead to a CO WD collision.
This scenario is included in Section 6.

all systems
systems that become 
dynamically unstable

Initial parameters
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Dynamical instability

How often does this happen in triples?
✤ 3.6% for model uncorrelated binaries I
✤ 2.2% for model uncorrelated binaries II (Tokovinin)
✤ 2.4% for model Eggleton

Stability criterion of Mardling & Aarseth ’01

In good agreement with: 
✤ Hamers ea ’13
✤ Perets & Kratter ’12 (3.5%, 5.3%) based on hybrid method without 

secular Kozai dynamics 
=> close encounters, collisions, stellar exchanges, eccentric binaries
=> high collision rate, involving AGB stars

we demonstrate that the rate of 
stellar collisions due to the TEDI
is approximately 10−4  yr−1  per 
Milky-Way Galaxy, which is nearly 
30 times higher than the total
collision rate due to random 
encounters in the Galactic globular

 Moreover, we find that the
dominant type of stellar collisions is 
qualitatively different; most collisions 
involve asymptotic giant
branch stars, rather than main 
sequence, or slightly evolved stars, 
which dominate collisions in globular
clusters.

 
✤ Lastly, at each BINARY_C time-step the triple system is checked for
dynamical stability by means of the stability criterion formulated
by Mardling&Aarseth (2001), including the ad hoc inclination factor
f = 1 − (0.3/π) itot (with itot expressed in radians). Whenever
β ≤ βcrit, where βcrit is given by this stability criterion, the STD
equations are no longer strictly valid we do not model the subsequent
evolution. The phase of dynamical instability would need to
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Future plans...

✤ More testing of the importance of secular evolution on the triple 
population. How different do the inner binaries evolve compared to 
isolated binaries? 
✤ in particular for close inner binaries

✤ What is the effect of a different initial eccentricity distribution? 

✤ Fabrycky & Tremaine ’07 showed that KCTF is important for the 
formation of close MS binaries. How important is its role in binaries 
with more evolved stars?

✤ One possible
consequence of these eccentricity cycles is strong tidal friction and
subsequent orbital shrinkage, a process which is known as Kozai
cycles with tidal friction (KCTF). KCTF has been studied in the 
context
of (solar mass) main-sequence (MS) stars (Mazeh & Shaham
1979; Eggleton & Kiseleva-Eggleton 2001; Fabrycky & Tremaine
2007; Kisseleva-Eggleton & Eggleton 2010). In particular,
Fabrycky & Tremaine (2007) have shown that KCTF is responsible
for producing close MS binary systems with periods 
which is consistent with the observation that such systems are very
likely (96 per cent) orbited by a tertiary (Tokovinin et al. 2006).
It remains to be seen, however, whether KCTF is still effective
in higher mass triples (individual masses 
because their constituents have radiative envelopes and are thus
much less effective at dissipating tidal energy than their lower mass
counterparts, which have convective envelopes (Zahn 1977). On the
other hand, as such higher mass stars greatly increase in size and
develop convective envelopes during their red giant branch (RGB)
and asymptotic giant branch (AGB) phases tidal friction is expectedto
 become much more effective. Thus it is possible that KCTF is
effective at significantly shrinking the inner binary system during
the RGB/AGB phases, whereas this was not the case during the MS.
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Let’s start with binaries

• Population synthesis

• A new code for simulating the evolution of triples, including:

• stellar evolution

• regular & non-regular dynamics

• Preliminary results

• Common evolutionary pathways, dynamical instabilities 
through TEDI, mass transfer in eccentric orbits etc...  

• Consensus on the principles of binary evolution
• Many questions remain, e.g. regarding mass transfer stability, 

unstable mass transfer (common-envelope phase), accretion
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