The nature of Ultraluminous X-ray Sources

Grzegorz Wiktorowicz, M. Sobolewska, Jean-Pierre Lasota, K. Belczynski University of Warsaw, Astronomical Observatory, Poland gwiktoro@astrouw.edu.pl

Results

1. Populations older than ~ 100 Myr and luminosities between $10^{39} - \sim 10^{40} \text{ erg s}^{-1}$ are dominated by NSs. BHs in ULXs are present in significant numbers <u>only</u> in the first ~ 100 Myr after the star-formation start and dominate among the most luminous ULXs.

Number of ULXs

ULXs appear in a very specific sequence after the burst of SF:

• The most luminous ULXs (HLX; $L_X \gtrsim 10^{40} \,\mathrm{erg \, s^{-1}}$) contain HG donors (BHULXs) or evolved HeS (NSULXs). They form typically within *a few* × 10 Myr after ZAMS for BH accretors and *a few* × 100 Myr for NS accretors.

The dependence of the #ULX on the time for burst starformation. The BHULXs appear earlier, but due to their short lifespan NSULX become dominant shortly after the burst ends at ~ 100 Myr. The local maxima are related to different evolutionary routes.

Formation sequence			
t[Myr]	Accretor	Donor	
8-30	BH	Main-Sequence	
9 - 50	NS	Main-Sequence	
140 - 500	NS	Hybrid WD	
300 - 1100	NS	Hertzsprung Gap	
800 - 1800	NS	Helium WD	
900 - 2000	NS	Red Giant	

The schematic representation of the evolution of a typical NSULX in old stellar populations. We predicted that systems formed in this route will dominate the ULX population late ($a \ few \times Gyr$) after the end of star-formation.

Ultraluminous X-ray source Two observational properties:

Methodology		
Simulations	Accretion	Beaming
• Population synthesis code	1. The upper limit model	Beaming factor: $b = \frac{\Omega}{4\pi}$
StarTrack	$\dot{M}_{\rm eff} = \dot{M}_{\rm DIOE}$	Apparent luminosity: $L_{X,iso} = \frac{\Delta X}{b}$
• 2×10^7 simulated binaries for each	acc IVI RLOF	1.b = 1

- a point-like (i.e. not extended), off-nuclear X-ray source with a peak emission localized in the X-ray band;
 isotropic equivalent X-ray luminosity in excess of 10³⁹ erg s⁻¹ (Eddington limit (EL) for ~ 10 M_☉ BH).
- ULXs were observed to harbor NS:
- ULX X-2 in M82 (Bachetti et al. 2014)
 P13 in NGC 7793 (Furst et al. 2016)
 ULX 1 : NGC 5007 (Lot 1 do 1 2016)
- ULX-1 in NGC5907 (Israel et al. 2016)

- model ($\sim 5\%$ of the Milky-Way 2. The equivalent galaxy)
- \bullet burst and constant star-formation
- 3 metallicities: Z_☉, Z_☉/10, Z_☉/100
 2 accretion models
- 4 beaming models
- \bullet only RLOF

- 2. The logarithmic model
 - $\dot{M}_{\rm acc} = \min(\dot{M}_{\rm RLOF}, \dot{M}_{\rm Edd})$

 $L_{\rm X} = L_{\rm Edd}(1 + \ln \dot{m})$

3.

 $b \sim \frac{73}{\dot{m}^2} \quad \dot{m} \gtrsim 8.5$ $b = 1 \quad \dot{m} < 8.5$

based on Koral code