Testing the present models of binary evolution.

Anna Francesca Pala

ImBaSE - July 4, 2017

THE UNIVERSITY OF

4 同

Dac

What is a CV?

- > 1100 CVs
- accretion physics
- bench test for compact binary evolution

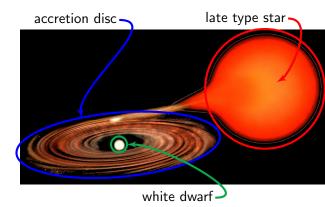
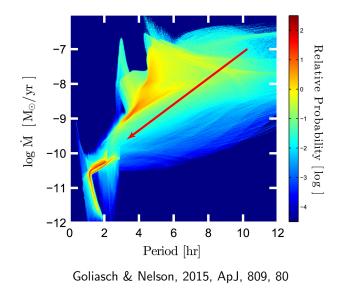
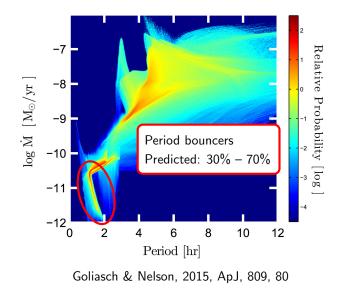



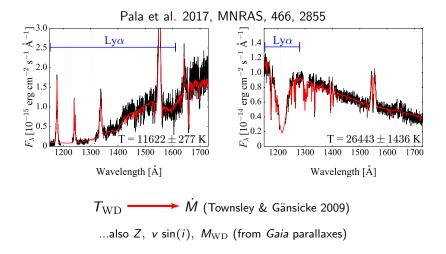
Image credit: adapted from image by P. Marenfeld/NOAO/AURA/NSF

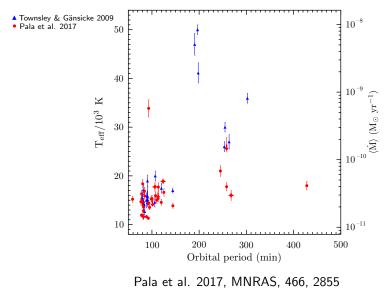
Testing the present models of binary evolution


CV evolution – Theory

Anna Francesca Pala

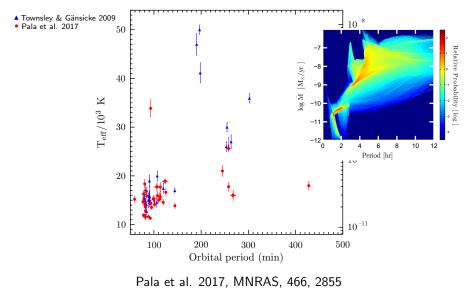
Testing the present models of binary evolution


CV evolution – Theory

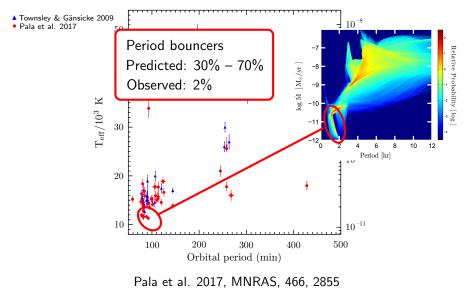

Anna Francesca Pala

Testing the present models of binary evolution

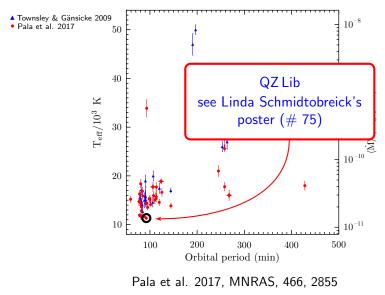
A 122 orbit HST program



Anna Francesca Pala


Anna Francesca Pala

Testing the present models of binary evolution


Anna Francesca Pala

Testing the present models of binary evolution

Anna Francesca Pala

Testing the present models of binary evolution

Anna Francesca Pala

Testing the present models of binary evolution

CV evolution - Theory vs Observations

Major discrepancy between theory and observations

- > 1100 CVs known, \simeq 800 period bouncer expected
- only a handful of period bouncer detected

Can we trust the theory of compact binary evolution?

Important implications for X-ray transient, millisecond pulsars, SNe Ia...

Anna Francesca Pala

How can we identify the missing population?

- low spatial density
- brown dwarf/accretion signature absent
- faint ($V \simeq 20.5$)
- $P_{\rm orb} \simeq 80 120 \ {\rm min}$
- brown dwarf companion of Jupiter size
- 10 15% eclipsing
- deep survey
- multi-band photometry for colour identification
- high speed photometry for eclipse detection

Anna Francesca Pala

Testing the present models of binary evolution

How can we identify the missing population?

- low spatial density
- brown dwarf/accretion signature absent
- faint ($V \simeq 20.5$)
- $P_{\rm orb} \simeq 80 120 \ {\rm min}$
- brown dwarf companion of Jupiter size
- 10 15% eclipsing
- deep survey
- multi-band photometry for colour identification
- high speed photometry for eclipse detection

Anna Francesca Pala

How can we identify the missing population?

- low spatial density
- brown dwarf/accretion signature absent
- faint ($V \simeq 20.5$)
- $P_{\rm orb} \simeq 80 120 \ {\rm min}$
- brown dwarf companion of Jupiter size
- 10 15% eclipsing
- deep survey
- multi-band photometry for colour identification
- high speed photometry for eclipse detection

JAST/T80Cam

- FoV: 1.4°×1.4°
- 2 1 CCD 9.2k × 9.2k pixels (84M pixels)
- 3 12 s readout time
- **4** Filters: $u, g, r, i, z, H\alpha$

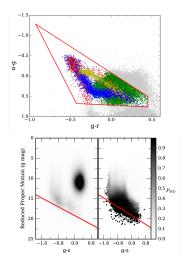
CHiCaS

Compact binaries High Cadence Survey

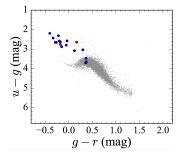
Anna Francesca Pala, Alessandro Ederoclite,

B.T. Gänsicke, J. Abril, H. Vázquez Ramió, R. Raddi, N.P. Gentile Fusillo, A. Rebassa–Mansergas

268 hours awarded over 4 semesters 136 deg², $|b| \simeq 15^{\circ}$, E(B - V) < 0.051 minute cadence - $V \simeq 21.5$ expected to find 5-10 period bouncers

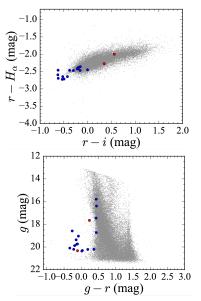


ImBaSE - July 4, 2017


Observing strategy and identification methods

Multiband photometry + 3 hours of uninterrupted time series

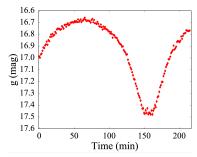
- CVs and white dwarfs identification thanks to their colours (Abril et al. in preparation, Gentile Fusillo et al. 2015)
- maximising the probability of detecting 1 eclipse per period bouncer


Colour-colour diagrams from CHiCaS J065048+230614

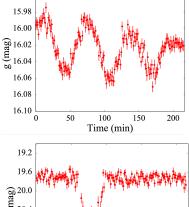
- 1 Field (1.5% of the total data set):
 - 16 WDs 2 CVs
 - 30 000 lightcurves

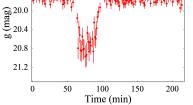
Total program:

- ≃ 1 000 WDs
- 2000000 lightcurves



Anna Francesca Pala


Testing the present models of binary evolution


Additional science from CHiCaS

15.96

- contact binaries
- eclipsing binaries
- pulsating stars
- detached WD+MS binaries
- planetary debris around WDs (WD 1145+017)
- AM CVn

Summary

CHiCaS:

- first systematic attempt to find period bouncers
- a lot of additional science
- · complete and unbiased view into short term variability
- public data

 $2\,000\,000$ light curves $V \simeq 21.5 - 1$ minute cadence full colour information!!!

Summary

CHiCaS:

- first systematic attempt to find period bouncers
- a lot of additional science
- · complete and unbiased view into short term variability
- public data

 $2\,000\,000$ light curves $V \simeq 21.5 - 1$ minute cadence full colour information!!!

I'm looking for a job!

Anna Francesca Pala

Testing the present models of binary evolution

Summary

CHiCaS:

- first systematic attempt to find period bouncers
- a lot of additional science
- · complete and unbiased view into short term variability
- public data

 $2\,000\,000$ light curves $V \simeq 21.5 - 1$ minute cadence full colour information!!!

I'm looking for a job! Thank you

Anna Francesca Pala

Testing the present models of binary evolution