

Accretion Simulations of η Car and the Parameters of the Binary System

Amit Kashi – Ariel University The IMPACT of BINARIES on STELLAR EVOLUTION ESO Garching, July 3-7, 2017

η Car

- A very massive binary system: $M_1 \simeq 90 170 M_{\odot}$ $M_2 \simeq 30 - 80 M_{\odot}$
- Luminosity: $L \simeq 5 \times 10^6 L_{\odot}$
- Period: $P \simeq 5.54 yr$
- Eccentricity $e \approx 0.85 0.9$
- Both stars blow winds that collide and form shocks.
- Spectroscopic event close to periastron passage.

η Car image of the Brγ line at velocity of –277 km/s (VLTI-AMBER; Weigelt+ 2016)

The giant eruptions of η Car

- The primary is recovering from giant eruptions in the 19 century.
- Secondary may have played a role in triggering the eruption.

The binary system η Car (today)

Mass-loss rate of the primary:

$$\dot{M}_1 = 2.5 \times 10^{-4} - 10^{-3} M_{\odot} \text{ yr}^{-1}$$

(e.g., Smith+ 2003, Davidson & Hymphrey -2012, Groh 2012, Madura+ 2012).

- The secondary:
 - Less massive
 - Smaller mass loss
 - It is the main source for ionizing photons
 - T=37000-41000K (Verner+ 2005; Teodoro+ 2008; Mehner+ 2010).

The X-ray Cycle

X-rays are produced in a bow shock due to the collision of the dense wind of the primary with the lower density, higher velocity wind of the secondary.

Amit Kashi - Accretion Simulations of η Car

The Event

Damineli + 2008

Variation in line intensities indicates that there is far less UV radiation during the spectroscopic event.

The T \simeq 40000K secondary is the main ionization source.

during the event the secondary radiation must be obscured from the surrounding gas.

The effective temperature of the obscured secondary decreases from $T_{eff} \simeq 40000$ K to $T_{eff} < 2500$ OK (Martin+ 2006).

Amit Kashi - Accretion Simulations of n Car

Our older analytic results

- Checked both Bondi-Hoyle and RLOF accretion rates
- Integration of accreted mass within the accretion radius over 70 days according to density distribution of primary wind.

Our older analytic results, cont.

 We obtained accreted mass

 $M_{\rm acc} \approx 0.5 - 3 \times 10^6 M_{\odot}$

 Angular momentum calculations suggested a thick disk is formed, obscuring secondary light from equatorial directions.

Kashi & Soker 2009

Older simulations

- Wind collision in a gridbased code.
- Secondary's gravity not included.
- X-ray minimum was not obtained by the simulation.
- Accretion was not obtained.
- Not surprising models with no accretion fail to reproduce the X-ray minimum.

Older simulations

- SPH simulations by Madura et al. (2013).
- The wind of the secondary curves around the wind of the primary.
- Colliding wind region remains
- No accretion.

Amit Kashi - Accretion Simulations of η Car

A step forward

- Full 3D simulation by Akashi et al. (2013).
- Secondary gravity included, radiative cooling included.
- A filament of gas has reached the wind launching box around the secondary.
- → Secondary gravity is essential for accretion to occur.
- → Numerical viscosity is important.

Akashi, Kashi, Soker 2013

Onset of Simulation (Kashi 2017)

- We use version 4.3 of the hydrodynamic code FLASH.
- 3D Cartesian grid : (x, y, z) = ±8 AU
- Our initial conditions are set 50 days before periastron.
- We place the secondary in the center of the grid and send the primary on a Keplerian orbit with eccentricity e = 0.9.
- 5 levels of refinement with better resolution closer to the center ($\simeq 1.7 R_{\odot}$).
- High resolution at the wind collision region allows to follow hydrodynamic instabilities.

Physics included in the new simulations (Kashi 2017):

- Secondary gravity (important!).
- Self gravity (included but negligible).
- Radiative cooling (improved algorithm).
- Radiative transfer.
- Artificial viscosity (important for instabilities).
- Response of the secondary wind to accreted mass.

Accretion is obtained

 $y~(R_{\odot})$

Dense filaments of gas are accreted onto the secondary starting ~4 days before periastron passage.

Amit Kashi - Accretion Simulations of n Car

Accretion (cont.)

- The filaments come from different directions.
- They are not formed by self-gravity but rather by hydrodynamic instabilities and thermal instability.
- Density range: $ho \simeq 10^{-12} - 10^{-11} \text{ g cm}^{-3}$
- Filaments consequently break into clumps.

Destruction of wind collision region, followed by accretion onto the secondary

Kashi (2017)

Clumps Formation by the Plateau-Rayleigh Instability

smooth surface \rightarrow filaments \rightarrow clumps

Accretion Panoramic View

Amit Kashi - Accretion Simulations of n Car

Simulation results: accreted mass

The effective temperature

- Accreion is mostly close to equator.
- But in the meantime the secondary is spinning.
- Stellar rotation might average the values over latitude.

The effective temperature

- Accreion is mostly close to equator.
- Therefore the temperature around the equator drops more considerably.
- The poles of the secondary can continue to ionize the wind for longer time.

Parameters of the Binary System

Parameter	Meaning	Conventional mass model	High mass model
Р	Orbital period	2023 days	2023 days
e	Eccentricity	0.9	0.9
a	Semi-major axis	16.64 AU	19.73 AU
M_1	Primary mass	$120 {\rm ~M}_{\odot}$	$170 \mathrm{M}_{\odot}$
M_2	Secondary mass	$30 { m ~M}_{\odot}$	$80 { m M}_{\odot}$
R_1	Primary radius	$180 \ \mathrm{R}_{\odot}$	$180 \ \mathrm{R}_{\odot}$
R_2	Secondary radius	$20~{ m R}_{\odot}$	$20~{ m R}_{\odot}$
v_1	Primary wind velocity	500 km s^{-1}	500 km s^{-1}
v_2	Secondary wind velocity	3000 km s^{-1}	3000 km s^{-1}
\dot{M}_1	Primary mass loss rate	$6 \times 10^{-4} \ {\rm M_{\odot} \ yr^{-1}}$	$6 \times 10^{-4} \ {\rm M_{\odot} \ yr^{-1}}$
\dot{M}_2	Secondary mass loss rate	$10^{-5} {\rm M}_{\odot} {\rm yr}^{-1}$	$10^{-5} {\rm M}_{\odot} {\rm yr}^{-1}$

The High Mass Model

- Assumptions:
 - the two 19th century eruptions were triggered by periastron passages.
 - mass was lost
 - mass was transferred from primary to the secondary
 - the energy of the eruptions comes from gravitational energy of the accreted mass
- Result: High mass binary better matches the peaks of the eruption to occur during periastron passages.

High Mass model

• We take: $M_1 = 170 \, {
m M_{\odot}}$

 $M_2 = 80 \,\mathrm{M}_{\odot}$

- Same orbital eccentricity, same mass loss rates.
 - Results:
 - Accretion starts earlier.
 - Accretion rate is higher.
 - Accretion lasts longer.
 - Secondary's ionizing radiation is lower for longer duration.

₃ Kashi (2017)

Amit Kashi - Accretion Simulations of η Car

Mass accreted onto the secondary

Amit Kashi - Accretion Simulations of η Car

Figure 5. Variation of the binary parameters (orbital period *P*, semimajor axis *a*, orbital separation *r*, eccentricity *e*, and specific angular momentum *h*) during the 20 year long GE of η Car. The variations are given for different sets of parameters we use in the paper (see Table 1). Left: "Common model"; middle: "MTz" model; right: "MTe" model.

Line variations during the event are better explained with the high mass model

Amit Kashi - Accretion Simulations of n Car

Amit Kashi - Accretion Simulations of η Car

Simulations of a VMS recovering from a giant eruption

Kashi, Davidson & Humphreys 2015

Amit Kashi - Accretion Simulations of η Car

Summary

- Accretion in η Car confirmed.
- Our simulations confirm that a \simeq few x10⁻⁶ M_{\odot} are accreted onto the secondary during periastron passage.
- Our older analytic calculations of the accreted mass gave nice results.
- The accreted gas lowers the effective temperature from 37000-41000K to >25000K, mostly at low latitudes.
- It reduces the number of UV photons and explains the spectroscopic event.
- High mass model $M_1 = 170 M_{\odot}$, $M_2 = 80 M_{\odot}$ better agrees with observations.
- As accretion occurs now, it surely occurred during the giant eruptions!