When binaries keep track of recent nucleosynthesis

Zr-Nb pair in extrinsic stars as a s-process thermometer

Drisya Karinkuzhi Sophie Van Eck, Alain Jorissen, Thibault Merle, Stephane Goriely, Lionel Siess, Henri Boffin

ImBaSE-2017

03-07-2017

LB UNIVERSITÉ LIBRE DE BRUXELLI

AGB Stars: an introduction

Why are AGB stars important?

- →Evolutionary stage
- Heavy element nucleosynthesis (s-process)
- Contribution to galactic chemical evolution

s-process neutron source

→ ${}^{12}C(p, \gamma){}^{13}N(\beta){}^{13}C(\alpha, n){}^{16}O$ [${}^{13}C$ pocket] (low mass (1-3 M_☉)AGB stars T = 0.9 x 10⁸ K)

Credit: S . Goriely and S. Van Eck

How do we get a thermometer?

$$\omega^* = \langle \sigma_{93} \rangle \times \left[\frac{1}{\langle \sigma_{90} \rangle} + \frac{1}{\langle \sigma_{91} \rangle} + \frac{1}{\langle \sigma_{92} \rangle} + \frac{1}{\langle \sigma_{94} \rangle} \right]$$

From the isotopic abundances of s-only isotopes $\omega^* = N_s(Zr)/N_s({}^{93}Zr)$

where ω^* , the maxwellian averaged cross section is a sensitive function of temperature

New s-process thermometer

New s-process thermometer

 $[Zr/Fe] = [Nb/Fe] + \log (N_s(Zr)/N_s(Nb)) - \log (N_o(Zr)/N_o(Nb))$

ω*

(Neyskens, Van Eck, Jorissen, Goriely, Siess & Plez, Nature, 2015)

- Y intercept of Zr - Nb plot provides ω^*

Application: S- stars

Neutron source in S stars identified: ${}^{13}C(\alpha,n){}^{16}O$

Neyskens, Van Eck et al., Nature, 2015

Extending the sample with Barium stars

Derived s-process operation temperatures

s-process abundance pattern (4 M_{\odot} models)

s-process operation temperatures from the model

Comparison with temperatures (bottom of the pulse) of STAREVOL models [Fe/H]=-0.3 (pulse 13) 2.45 - 3.76 x 10⁸ K [Fe/H]=-0.5 (pulse19) 2.45 - 3.85 x 10⁸ K

[Fe/H]=-0.7 (pulse 13) 3.15 - 3.89 x 10⁸ K

Discussion on peculiar objects

Diagnosis. 1: Nitrogen abundance

Diagnosis 2. The mass

Lower limit on the donor mass
 is derived from the HR
 diagram:

STAREVOL evol. tracks; GAIA parallaxes; more details in A. Escorza's talk

- → Only 3/13 objects have M< 2 M_☉ and their [Zr/Nb] does not indicate high s-process temperatures
- → Among the 3 outliers with large [Zr/Nb], only 1 mass could be determined: M > 3 M_☉

→ consistent with higher sprocess temperatures operating in more massive stars

Diagnosis 3: Rb abundance

- High [Rb/Fe]
 observed for high
 mass stars and it
 point at ²²Ne
 source.
- [Rb/Fe] larger for
 Ba stars compared
 to S stars, but
 much below model
 predictions

Conclusion

- Preliminary results indicate high neutron temperatures for the production of s-process elements in barium and CH stars.
- Possibly a difference between extrinsic S stars and barium stars (originating from the mass of the donor?)

Thank you for your kind attention!!!!!

Diagnosis 3: Rb abundance

High [Rb/Fe]
 observed for high
 mass stars and it
 point at ²²Ne
 source

Objectives: To derive s-process operation temperature and thereby to understand the neutron sources for a group of extrinsic stars independent of stellar evolutionary models. where ω^* is a sensitive function of temperature (neutron capture cross sections of Zr is a sensitive function of temperature)

$$\omega^{*} = \langle \sigma_{93} \rangle \times \left[\frac{1}{\langle \sigma_{90} \rangle} + \frac{1}{\langle \sigma_{91} \rangle} + \frac{1}{\langle \sigma_{92} \rangle} + \frac{1}{\langle \sigma_{94} \rangle} \right]$$

Y intercept of Zr-Nb plot provides ω^*

The sample: Extrinsic stars

- An extended sample of extrinsic stars:
- highly enriched Barium and CH stars
- observed using HERMES spectrograph, Resolution (~85000), Wavelength coverage 3750 – 9000 Å.

Parameters and abundance determinations

- Stellar parameters and elemental abundances : using TURBOSPECTRUM spectral synthesis code
- MARCS model atmospheres
- > Linelist: VALD database

Results

- + T_{eff} ranges from 3800 5150 K
- → log g between 1 and 3.4
- Derived abundances for nine s-process elements :
 - → Careful line selection from comparison with benchmark stars:
 - → V762 Cas, (Teff 3800 K, $\log g = 1$)
 - Arcturus (Teff 4258 K, $\log g = 1.6$)
 - Sun

