To Ba or not to Ba: Observational constraints to the evolution of barium stars

Ana Escorza - ImBaSE 2017

+ H. Van Winckel, L. Siess, A. Jorissen, H. Boffin, S. Van Eck ...

KU LEUVEN

IBRF

ULB

IINIVERSITÉ

Barium stars

G- and K-type giants which present overabundances of s-process elements (e.g., Ba) on their surface.

They could not have synthesised them

G- and K-type giants which present overabundances of s-process elements (e.g., Ba) on their surface.

They could not have synthesised them

The slow-neutron-capture (s-) process of nucleosynthesis takes place in the AGB phase.

Formed through binary interaction in a lowor intermediate-mass binary.

The less evolved secondary gets polluted with AGB products via wind and/or RLOF.

Formed through binary interaction in a lowor intermediate-mass binary.

The less evolved secondary gets polluted with AGB products via wind and/or RLOF.

Remaining uncertainties:

★ Initial conditions
 ★ Mass-transfer scenario
 ★ Evolutionary links
 ★ ...

Goal of our research

Goal of our research

Observational vs. theoretical HR and e-logP diagrams

Improving models & increase our understanding of evolution and interaction in low- and intermediatemass binaries.

Why barium stars?

- Known to be formed by binary interaction with a former AGB companion
- We can use both observed orbital parameters and chemical abundances to put constraints on the models.

Goal of our research

Observational vs. theoretical **HR and e-logP diagrams**

Improving models & increase our understanding of evolution and interaction in low- and intermediatemass binaries.

The TGAS HR diagram of Ba stars

Escorza et al., in prep

Sample selection

Ba and related star samples from

- Lu et al. (1983 & 1991)
- Bartkevicius (1983)
- North et al. (2000)

Part of the Tycho2 catalogue.

Part of TGAS (Tycho-Gaia Astrometric Solution)

Error(parallax) < ¹/₃ parallax.

DR1, Gaia Collaboration et al. (2016a) TGAS, Lindegren et al. (2016)

Sample selection

DR1, Gaia Collaboration et al. (2016a) TGAS, Lindegren et al. (2016)

Hipparcos, ESA (1997)

Determination of Teff and L

Spectral energy distribution (SED) fitting

We retrieve available photometry from SIMBAD

χ2 minimization over a grid of MARCS model atmospheres

Gustafsson et al. (2008)

Determination of Teff and L

Spectral energy distribution (SED) fitting

We retrieve available photometry from SIMBAD

χ2 minimization over a grid of MARCS model atmospheres

Gustafsson et al. (2008)

Teff, logg, metallicity and E(B-V)

Fitting tool by P. Degroote

Determination of Teff and L

Spectral energy distribution (SED) fitting

We retrieve available photometry from SIMBAD

χ2 minimization over a grid of MARCS model atmospheres

0.02

0.04

0.06 [beu] 0.08

0.12

0.14

Gustafsson et al. (2008)

Too many free parameters: Teff, logg, metallicity and E(B-V)

Fixed [Fe/H] = -0.25, where the distribution of known metallicities for Ba stars peaks

Galactic 3D extinction maps from Gontcharov et al. (2012)

Fitting tool by P. Degroote

HR diagram of Ba stars

HR diagram of Ba stars

- sgCH stars occupy the same region on the HRD that dBa stars.
- Some targets appear at high masses.
- Strong concentration of Ba stars in the red clump.

What can we learn from this?

Mass distribution of Ba stars

Mass estimated by interpolating in the theoretical tracks.

Grid with 17 \times 10⁶ points characterised by a value of T, L and $M_{\rm T,L}$

We take into account the time that a star spends at a given location of the HRD.

Mass distribution of Ba stars

Mass estimated by interpolating in the theoretical tracks.

Grid with 17 \times 10 6 points characterised by a value of T, L and $M_{\rm T,L}$

We take into account the time that a star spends at a given location of the HRD.

6

Mass distribution of Ba stars: metallicity

Distribution of metallicities if Ba stars found in the literature

Mass distribution of Ba stars: metallicity

Mass distribution of Ba stars: metallicity

The effect of metallicity is also very important

Spectroscopically determined metallicities are a requirement to get information about individual masses.

Data for 330 stars of the sample is available in the literature (+ we have HERMES !)

Talk by D.Karinkuzhi

Mass distribution of Ba stars: normal giants?

Both distributions peak at similar values.
Accumulation in the clump does not seem to be specific to Ba stars.

- Deficit of low mass Ba stars. **Probably early shrinkage of the orbit.**
- Excess of high mass Ba stars.
 Pollution of the sample.

Mass distribution of Ba stars: Populations

Barium index (Warner, 1965) reflects the strength of the Ba lines, based on visual inspection, on a scale from Ba1 to Ba5.

No significant difference between mild (Ba1 - Ba2) and strong (Ba3 - Ba5) barium stars.

Lü (1991) introduced some stars with **"Ba < 1"**, which happen to populate the high mass tail.

Location in the HRD and orbital period

HRD and orbital period

Orbital elements from Jorissen et al. (1998), Jorissen et al. (2016) and Escorza et al. (2017; in prep.)

Two subsamples:

- Pre-RGB: log L/L $\odot \le 1.4$
- Red clump: 1.4 < log L/L \odot \leq 2.2

11

HRD and orbital period

Orbital elements from Jorissen et al. (1998), Jorissen et al. (2016) and Escorza et al. (2017; in prep.)

Two subsamples:

- Pre-RGB: log L/L $\odot \le 1.4$
- Red clump: 1.4 < log L/L \odot \leq 2.2

Tendency for larger periods in the red clump, as compared to systems lying below.

Conclusions

Conclusions

HR diagram for barium stars \longrightarrow Mass distribution.

- The effects of the **uncertainties** and of the metallicity prevent us from getting information about individual objects. Don't forget the uncertainties in evolutionary models!
- Ba giants seem to evolve as **normal red giants**.
- Subgiant CH and dwarf Ba stars occupy the same region of the HRD.
- Strong and mild barium stars have **similar mass distributions**.
- **Correlation** between the location in the HRD and the **orbital period** of Ba stars. Tendency for larger periods in the core He burning phase.

Thank you for your attention

Ana Escorza - ImBaSE 2017

UNIVERSITÉ LIBRE DE BRUXELLES

KU