Stellar Multiplicity Meets Stellar Evolution: the APOGEE view

Carles Badenes University of Pittsburgh / PITT PACC

with Peter Freeman (CMU), Todd Thompson (OSU) Kevin Covey (WWU), and the APOGEE RVVar team

ESO July 7, 2017

Binaries and Stellar Evolution

 Moe talk ⇒ stellar multiplicity statistics: f_m, P, q, e. Not independent!

- Relatively well known for Sun-like MS stars in the Solar neighborhood [Raghavan+ 10].
- Pols, Moe talks ⇒ What happens after the MS?
 What is the effect of [Fe/H]?
- APOGEE [Majewski+ 15] ⇒
 Stellar multiplicity from the MS to the RC.

APOGEE

 Galactic evolution: Multi-epoch IR
 spectra R~20,000,
 ~10⁵ stars, high S/N
 [Majewski+ 15].

• MS, RG and RC stars, M~1 M_{Sun}, most of MW disk [Zasowski+ 13].

• ASPCAP [Perez+ 16] \Rightarrow T_{eff}, log(g), [Fe/H], **RVs**. RC catalog [Bovy+ 14]. The Cannon [Ness+ 15,16].

Carles Badenes ESO 07/07/17

Few RVs/star
 (median is 3) ⇒
 no orbits! [but
 Troup+ 16]

• Figure of merit: ΔRV_{max} . Multiple systems \Rightarrow $\Delta RV_{max} \gtrsim 4$ km/s (> 3,000).

• Trend of ΔRV_{max} with log(g): stellar multiplicity meets stellar evolution.

Carles Badenes ESO 07/07/17

Few RVs/star
 (median is 3) ⇒
 no orbits! [but
 Troup+ 16]

• Figure of merit: ΔRV_{max} . Multiple systems \Rightarrow $\Delta RV_{max} \gtrsim 4$ km/s (> 3,000).

Trend of ΔRV_{max}
 with log(g): stellar
 multiplicity meets
 stellar evolution.

Carles Badenes ESO 07/07/17

Few RVs/star
 (median is 3) ⇒
 no orbits! [but
 Troup+ 16]

• Figure of merit: ΔRV_{max} . Multiple systems \Rightarrow $\Delta RV_{max} \gtrsim 4$ km/s (> 3,000).

 Clear trend of ΔRV_{max} with log(g): stellar multiplicity meets stellar evolution.

Carles Badenes ESO 07/07/17

Few RVs/star
 (median is 3) ⇒
 no orbits! [but
 Troup+ 16]

• Figure of merit: ΔRV_{max} . Multiple systems \Rightarrow $\Delta RV_{max} \gtrsim 4$ km/s (> 3,000).

 Clear trend of ΔRV_{max} with log(g): stellar multiplicity meets stellar evolution.

APOGEE: Models for ΔRV_{max}

- For simplicity, take $\Delta RV_{max} > 10$ km/s.
- Contamination from RC at log(g)~2.8.
- Attrition of high ΔRV_{max} (short P) systems: 88% of MS systems are gone in the RC.
- Observational constraint on Case B mass transfer (CE episodes ⇔ LRNE, Kaminski, Ohlmann talks [Ivanova+13, Kochaneck+ 14])

- For simplicity, take $\Delta RV_{max} > 10 \text{ km/s}.$
- Contamination from RC at log(g)~2.8.
- Attrition of high ΔRV_{max} (short P) systems: 88% of MS systems are gone in the RC.
- Observational constraint on Case B mass transfer (CE episodes ⇔ LRNE, Kaminski, Ohlmann talks [Ivanova+13, Kochaneck+ 14])

APOGEE: ΔRV_{max} vs. [Fe/H]

• APOGEE: high resolution, multi-epoch IR spectra of ~100,000 stars (Galactic archeology).

• Unique view of stellar multiplicity, from the MS to the RC. Fewerpoch spectra: no orbits $\Rightarrow \Delta RV_{max}$.

• Attrition of high ΔRV_{max} (short P) systems as stars climb the RGB $\Rightarrow 88\%$ of MS systems with $\Delta RV_{max} > 10$ km/s are gone in the RC \Rightarrow Case B mass transfer / rate of CE in the MW.

• Clear trend with [Fe/H]: lower [Fe/H] stars have higher ΔRV_{max} distributions \Rightarrow consistent with higher f_m at lower [Fe/H] [Gao+ 14, 17, but Hettinger+ 15].

• Future work: Constrain multiplicity statistics, follow-up of interesting systems.

Additional Plots

Additional Plots

Additional Plots

