

Magnetic fields in Massive close binaries

E. Alecian (U. Grenoble – IPAG)

C. Neiner (Obs. Paris), G. Wade (RMC, Canada),

J. Morin (U. Montpellier), S. Mathis (CEA/Saclay),

M. Shultz (Uppsala U., RMC), E. Semenko (SAO, Russia)),

S. Gregory (U. Saint Andrews), A. ud-Doula (Penn State U.),

J. Grunhut (U. Toronto), Y. Nazé (U. Liège)

+ The **BinaMIcS** collaboration

Stellar magnetic fields

 \bullet \bullet \bullet

In solar-type stars

Complex magnetic fields

with sometimes cycles

Varying on short timescales (days, weeks)

 \Rightarrow Fossil fields

- Low-order fields
- Strong (~kG)

000

• Stable (decades)

© J. Silvester

 \Rightarrow Fossil fields

- Low-order fields
- Strong (~kG)

000

- Stable (decades)
- \Rightarrow Only in 5-10%

© J. Silvester

000

000

000

Origin of fossil fields

Fossilised Galactic field

B flux conservation

Dyn. B relaxes inside rad.

Mergers

Strong shear MRI

Rigidly Rotating Magnetosphere

Townsend+07 ; Oksala+15

- In the most massive stars
- Radiative winds material trapped into the magnetosphere

Rigidly Rotating Magnetosphere

Townsend+07 ; Oksala+15

- In the most massive stars
- Radiative winds material trapped into the magnetosphere

What happens if you add a close companion ?

 $\bullet \quad \bullet \quad \bullet$

The BinaMIcS project

Binarity and Magnetic Interaction in various classes of stars

- >800 h ESPaDOnS/CFHT, Narval/TBL Pls: E. Alecian, C. Neiner, G. Wade
- ~170 short-P binary (Porb < 20d), V < 8 mag, SpT > F5 => statistical sample
- 10 magnetic systems with Porb < 100 d, V < 10 mag => monitoring sample

 Least-Square-Deconvolution => increases the SNR

Selected Results

 \bullet \bullet \bullet

- B detected in <2% of the sample (vs 5-10% in isol. stars)
 => IC of formation are retained ?
- B detected in only one of the two components
 => IC of formation are not dominating Alecian+ in prep.
- B detected in the two components of cLup
 => merger impossible
 Shultz+15
- Post-interacting binaries have also less than 10% Nazé+17 magnetic stars
 => binary interaction is not playing an important role

ID	Porb	M2/M1	e	Teff	Prot (d)	β (°)	Bd (kG)	
Plaskett	14.4	<0.1	0.00	34000	1.22	90	2.00	
NU Ori	14.3	0.33	0.00	31000	1.09	60	1.80	Ð
HD 37017	18.7	0.49	0.47	23000	0.90	70	8.30	Siv
HD 149277	11.5	0.91	0.24	22000	25.4	75	9.90	ase
HD 156324 A	1.6	0.39	0.00	22000	1.58	71	14.0	Σ
ε Lup Aa	4.6	0.84	0.27	22000	2.24	38	0.80	
ε Lup Ab	4.6	0.84	0.27	20000	2.48	15	0.33	
BD-19 5044 L	17.6	0.68	0.47	13000	5.04	26	1.40	
HD 5550	6.8	0.65	0.00	11400	6.84	24	0.065	Ň
HD 98088	5.9	0.73	0.18	8300	5.90	75	3.80	-
Orbit					S	tar		

Grunhut+ in prep. ; Shultz+. in prep. ; Shultz+ sub. ; Shultz+2015 ; Landstreet+2017 ; Alecian+2016 ; Folsom+2012

ID	Porb	M2/M1	e	Teff	Prot (d)	β (°)	Bd (kG)	
Plaskett	14.4	<0.1	0.00	34000	1.22	90	2.00	
NU Ori	14.3	0.33	0.00	31000	1.09	60	1.80	0
HD 37017	18.7	0.49	0.47	23000	0.90	70	8.30	Siv
HD 149277	11.5	0.91	0.24	22000	25.4	75	9.90	as
HD 156324 A	1.6	0.39	0.00	22000	1.58	71	14.0	Σ
ε Lup Aa	4.6	0.84	0.27	22000	2.24	38	0.80	
ε Lup Ab	4.6	0.84	0.27	20000	2.48	15	0.33	
BD-19 5044 L	17.6	0.68	0.47	13000	5.04	26	1.40	
HD 5550	6.8	0.65	0.00	11400	6.84	24	0.065	Ň
HD 98088	5.9	0.73	0.18	8300	5.90	75	3.80	H
Orbit					S	tar		

Grunhut+ in prep. ; Shultz+. in prep. ; Shultz+ sub. ; Shultz+2015 ; Landstreet+2017 ; Alecian+2016 ; Folsom+2012

ID	Porb	M2/M1	e	Teff	Prot (d)	β (°)	Bd (kG)	
Plaskett	14.4	<0.1	0.00	34000	1.22	90	2.00	
NU Ori	14.3	0.33	0.00	31000	1.09	60	1.80	0
HD 37017	18.7	0.49	0.47	23000	0.90	70	8.30	Siv
HD 149277	11.5	0.91	0.24	22000	25.4	75	9.90	ase
HD 156324 A	1.6	0.39	0.00	22000	1.58	71	14.0	Σ
ε Lup Aa	4.6	0.84	0.27	22000	2.24	38	0.80	
ε Lup Ab	4.6	0.84	0.27	20000	2.48	15	0.33	
BD-19 5044 L	17.6	0.68	0.47	13000	5.04	26	1.40	
HD 5550	6.8	0.65	0.00	11400	6.84	24	0.065	Ž
HD 98088	5.9	0.73	0.18	8300	5.90	75	3.80	H
	Orb	it		Star				

Magnetic axis highly inclined,

ID	Porb	M2/M1	e	Teff	Prot (d)	β (°)	Bd (kG)	
Plaskett	14.4	<0.1	0.00	34000	1.22	90	2.00	
NU Ori	14.3	0.33	0.00	31000	1.09	60	1.80	Ð
HD 37017	18.7	0.49	0.47	23000	0.90	70	8.30	Siv
HD 149277	11.5	0.91	0.24	22000	25.4	75	9.90	ase
HD 156324 A	1.6	0.39	0.00	22000	1.58	71	14.0	Σ
ε Lup Aa	4.6	0.84	0.27	22000	2.24	38	0.80	
ε Lup Ab	4.6	0.84	0.27	20000	2.48	15	0.33	
BD-19 5044 L	17.6	0.68	0.47	13000	5.04	26	1.40	
HD 5550	6.8	0.65	0.00	11400	6.84	24	0.065	Ň
HD 98088	5.9	0.73	0.18	8300	5.90	75	3.80	÷
	Orb	it		Star				

Magnetic axis highly inclined,

- except for the only system with 2 magnetic stars, or

ID	Porb	M2/M1	e	Teff	Prot (d)	β (°)	Bd (kG)	
Plaskett	14.4	<0.1	0.00	34000	1.22	90	2.00	
NU Ori	14.3	0.33	0.00	31000	1.09	60	1.80	Ð
HD 37017	18.7	0.49	0.47	23000	0.90	70	8.30	Siv
HD 149277	11.5	0.91	0.24	22000	25.4	75	9.90	ase
HD 156324 A	1.6	0.39	0.00	22000	1.58	71	14.0	Σ
ε Lup Aa	4.6	0.84	0.27	22000	2.24	38	0.80	
ε Lup Ab	4.6	0.84	0.27	20000	2.48	15	0.33	
BD-19 5044 L	17.6	0.68	0.47	13000	5.04	26	1.40	
HD 5550	6.8	0.65	0.00	11400	6.84	24	0.065	Ň
HD 98088	5.9	0.73	0.18	8300	5.90	75	3.80	÷
	Orb	it		Star				

Magnetic axis highly inclined,

- except for the only system with 2 magnetic stars, or
- except for the only stars with faint magnetic fields

Magnetospheres

Shultz+ in prep.

Magnetospheres

Shultz+ in prep.

Magnetospheres

Shultz+ in prep.

• Magnetic properties:

- Fossil fields in less than 2%
- B filed in only one of the two components
- B strength distribution similar to isolated stars
- Preferentially large obliquity in the massive stars

• In Ap/Bp stars:

Confirm the findings of Carrier+02
However, very low statistics

 Additional work required to understand the impact on the CSE and AM loss

Thank you !

 \bullet \bullet \bullet

Origin of fossil fields (1)

~170 SB2 systems observed
2 mag. detections
⇒5 in total among ~340 stars
⇒< 2% mag. ★ in SB2
(5-10% mag. isolated stars)

Fragmentation simulations B low => easier to form binaries

© Commerçon+11

Memory of IC of fragmentation may have been retained

© Reiners, Morin, Bennett

