Molecfit

http://www.eso.org/sci/software/pipelines/skytools/molecfit

Sabine Moehler

Based on a presentation by Wolfgang Kausch (Innsbruck, Austria)

Atmospheric absorption / optical + NIR

Based on a presentation by Wolfgang Kausch

How can we get rid of this?

Plan A: Supplementary calibration frames "Classical method"

Required: transmission spectrum

Telluric Standard Stars:

- hot stars without/with few, well known intrinsic spectral features (B-type) or solar analogs
- observation in the vicinity, very similar airmass as science target
- observation directly before/after the science target
- expensive in telescope time
- conditions sometimes vary too fast
- + instrument line spread function is the same as for science

How can we get rid of this?

Plan α: Modelling

molecfit

Based on a presentation by Wolfgang Kausch

Telluric absorption correction with molecfit

Basic idea ([1],[2]):

- Derive the atmospheric state from its fingerprint in the science spectra
- Calculate synthetic transmission spectra corresponding to this state by means of a radiative transfer code
- Fit these spectra iteratively to absorption features in science spectra
- Use the best-fit transmission for the telluric absorption correction

Features:

- Comprehensive software suite for telluric absorption correction
- Instrument independent
- world-wide use
- based on Ansi-C \rightarrow high compatibility (Linux+MacOS)
- freely available*

[1] Smette et al., 2015, A&A 576, A77
[2] Kausch et al, 2015, A&A 576, A78
*http://www.eso.org/pipelines/skytools

Radiative transfer code

LBLRTM ([1],[2]):

- Line-By-Line-Radiative-Transfer-Model
- third party code [3]
- V12.2
- widely used in atmospheric research
- still being further developed
- uses LiNeFiLe to retrieve line information from the High Resolution Transmission database

[1] Clough et al., 2005, J. Quant. Spectrosc. Radiat. Transfer, 91, 233-244
[2] Clough et al., 1992, J. Geophys. Res., 97, 15761-15785
[3] http://rtweb.aer.com/lblrtm_frame.html

Based on a presentation by Wolfgang Kausch

Radiative transfer code / line database

HITRAN database([1],[2],[3]):

- 39 different molecules
- 2,713,968 spectral lines
- calculated & observed data
- V13 (HITRAN 2008)

[1] Atomic and Molecular Physics Division, Harvard-Smithsonian Center for Astrophysics

[2] Rothman et al., 2009, Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 110, pp. 533-572
[3] http://www.cfa.harvard.edu/HITRAN/

Radiative transfer code / atmospheric profile

- Static atmospheric standard profile (P, T, mixing ratios for many molecules)
- Global GDAS^{*} weather model: 1° x 1° grid, every 3 h, profiles for P, T, r_H Local meteorological data for height of site: P, T, and r_H (taken from FITS header if present) \rightarrow ESO MeteoMonitor

ppmv = parts per million volume

Based on a presentation by Wolfgang Kausch

molecfit workflow

Fitting procedure

Fitting ranges: lines of intermediate strength; good coverage of wavelength range; as narrow as possible (better continuum fit and shorter code run times)

Exclusion regions: no fitting of bad pixels (or other instrumental defects) and object features

Fitting procedure

 χ^2 minimisation by a Levenberg-Marquardt technique (MPFIT [1])

Fitting parameters:

- Scaling factors for molecular profiles
- Coefficients of polynomials for continuum fit
- Coefficients of Chebyshev polynomials for modification of wavelength grid
- Widths of boxcar, Gaussian, and Lorentzian for instrumental profile (alternative: userprovided kernel → no fit)
- Emissivity of greybody (only for fit of sky emission spectra in the thermal IR)

[1] Markwardt, C. B. 2009, in Astronomical Society of the Pacific Conference Series, Vol. 411, Astronomical Data Analysis Software and Systems XVIII, ed. D. A. Bohlender, D. Durand, & P. Dowler, 251

Invoking molecfit

GUI: <inst_dir>/bin/molecfit_gui <parameterfile>

Parameter file: plain ASCII file → text editor

Parameter file: plain ASCII file → text editor

X-shooter

varkern: 1 (variable kernel, linear increase with wavelength)
columns: NULL FLUX ERRS QUAL (MERGE1D)
columns: WAVE FLUX ERR QUAL (IDP)
H20 02 (VIS, fit only H20)
H20 02 C0 CH4 C02 (NIR fit only H20)

Parameters: Section "Molecular column"

considered by the radiative transfer code; Depends on the chosen fitting range **fit only molecules present in spectrum**

fit_molec: Defines, whether a molecular column should be fitted or assumed to be constant

wavelength [µm]

relcol: Scaling factor for the molecular column (starting value);

NOTE: # of values in fit_molec and relcol must be equal to number of molecules (order!);

Results / comparison

Comparison with Telluric Standard Star

Limitations

External:

- Accuracy of the line database
- Radiative transfer code accuracy
- Initial atmospheric profile

Internal:

- No correction for very low T possible
- Low S/N spectra cannot be fitted reliably
- Number of fitting parameters (λ -fit, continuum, LSF,....)
- Intrinsic spectral features of the object
- Resolution

Summary + Outlook

Modelling is a good alternative to supplementary observations

molecfit and skycorr are

- Instrument independent
- world-wide use
- based on Ansi-C \rightarrow high compatibility
- high flexibility
- freely available*

Will be implemented in future pipelines

^{*}Licenses for outside code to be respected

Molecfit details

- Molecfit User Manual ftp://ftp.eso.org/pub/dfs/pipelines/skytools/molecfit/VLT-MAN-ESO-19550-5772_Molecfit_User_Manual.pdf
- Molecfit Tutorial ftp://ftp.eso.org/pub/dfs/pipelines/skytools/molecfit/VLT-MAN-ESO-19550-5928_Molecfit_GUI_and_Tutorial.pdf

Invoking molecfit:

- Reflex
- GUI
- console:

```
<inst_dir>/bin/molecfit <parameterfile>
```

<parameterfile>:

contains all information required for the telluric absorption correction for a specific file, i.e. filenames, fitting parameters, output,....

Parameters: Sections "Directory" and "Input Data"

[...]
A relative or an absolute path can be provided. In the former case MOLECFIT
has to be started in <basedir>.
basedir: .
INPUT DATA
Data file name (path relative to basedir or absolute path)
filename: examples/input/crires_spec_jitter_extracted_0000.fits
ASCII list of files to be corrected for telluric absorption using the
transmission curve derived from the input reference file (path of list and
listed files relative to basedir or absolute path; default: "none")
listname: none
[...]

basedir: In all cases either absolute paths can be given, or paths relative to basedir

filename: File, which is to be corrected. This file is the reference, which is usually used for fitting and for the correction

listname: ASCII file containing a list of other spectra, which should be corrected with the same transmission spectrum

Parameters: Sections "Directory" and "Input Data"

```
[...]
# Type of input spectrum -- 1 = transmission (default); 0 = emission
trans: 1
# Names of the file columns (table) or extensions (image) containing:
# Wavelength Flux Flux_Err Mask
# - Flux_Err and/or Mask can be avoided by writing 'NULL'
# - 'NULL' is required for Wavelength if it is given by header keywords
# - parameter list: col_lam, col_flux, col_dflux, and col_mask
columns: Wavelength Extracted_OPT Error_OPT NULL
# Default error relative to mean for the case that the error column is missing
default_error: 0.01
[...]
```

trans: molecfit can fit both emission and transmission features;

columns: column names of the input file

default_error: If no error column is present one can give a default error here

Parameters: Sections "Directory" and "Input Data"

```
[...]
# Multiplicative factor to convert wavelength to micron
# (e.g. nm -> wlgtomicron = 1e-3)
wlgtomicron: 1e-3
# Wavelengths in vacuum (= vac) or air (= air)
vac_air: vac
[...]
```

wlgtomicron: Molecfit calculates internally in $[\mu m]$. Thus one needs to specify the wavelength unit in the input spectrum

vac_air: Wavelength regime; depends on the pipeline output

Parameters: Sections "Directory" and "Input Data"

[...]
ASCII or FITS table for wavelength ranges in micron to be fitted
(path relative to basedir or absolute path; default: "none")
wrange_include: none
ASCII or FITS table for wavelength ranges in micron to be excluded from the
fit (path relative to basedir or absolute path; default: "none")
wrange_exclude: none
ASCII or FITS table for pixel ranges to be excluded from the fit
(path relative to basedir or absolute path; default: "none")
prange_exclude: examples/config/exclude_crires.dat
[...]

Definition of the range files

wrange_include: Path to the file defining the fitting ranges

wrange_exclude: Exclusion range in λ space

prange_exclude: Exclusion range in pixel space

Parameters: Section "Results"

[...]

```
## RESULTS
# Directory for output files (path relative to basedir or absolute path)
output dir: output
# Name for output files
# (supplemented by "_fit" or "_tac" as well as ".asc", ".atm", ".fits",
# ".par, ".ps", and ".res")
output name: molecfit crires
# Plot creation: gnuplot is used to create control plots
# W - screen output only (incorporating wxt terminal in gnuplot)
# X - screen output only (incorporating x11 terminal in gnuplot)
# P - postscript file labelled '<output_name>.ps', stored in <output_dir>
# combinations possible, i.e. WP, WX, XP, WXP (however, keep the order!)
# all other input: no plot creation is performed
plot creation: XP
# Create plots for individual fit ranges? -- 1 = yes; 0 = no
plot_range: 0
[...]
```

output_dir: directory where all output files are stored in output_name: Defines name space for output files plot_creation: Defines type of output plots plot_range: Defines whether plots for ALL fitting ranges should be created individually

Parameters: Section "Fit Precision"

FIT PRECISION
Relative chi2 convergence criterion
ftol: 1e-2
Relative parameter convergence criterion
xtol: 1e-2
[...]

[...]

mpfit stops the fitting procedure as soon as either the χ^2 -value or the fitting parameters change less than a given certain limit

ftol: Convergence criterion for the variation of the χ^2 -value

xtol: Convergence criterion for the variation of the fitting parameters

Note: Use with care!

Parameters: Section "Background and continuum"

```
[...]
## BACKGROUND AND CONTINUUM
# Conversion of fluxes from phot/(s*m2*mum*as2) (emission spectrum only) to
# flux unit of observed spectrum:
# 0: phot/(s*m^2*mum*as^2) [no conversion]
# 1: W/(m^2*mum*as^2)
# 2: erg/(s*cm^2*A*as^2)
# 3: mJy/as^2
# For other units, the conversion factor has to be considered as constant term
# of the continuum fit.
flux_unit: 0
# Fit of telescope background -1 = yes; 0 = no (emission spectrum only)
fit back: 0
# Initial value for telescope background fit (range: [0,1])
telback: 0.1
[...]
```

flux_unit: Same as wlgtomicron, but for the flux (internal units: photons/($s^*m^{2*}\mu m^*as^2$))

fit_back: Defines, whether the telescope background should be fitted (greybody). Only
important for emission spectra (parameter: trans: 0)
telback: Initial value for the telescope background (greybody factor)

Parameters: Section "Background and continuum"

```
[...]
# Polynomial fit of continuum --> degree: cont_n
fit_cont: 1
# Degree of coefficients for continuum fit
cont_n: 3
# Initial constant term for continuum fit (valid for all fit ranges)
# (emission spectrum: about 1 for correct flux_unit)
cont_const: 1.
[...]
```

fit_cont: Defines whether the continuum should be fitted as poynomial

cont_n: degree of continuum polynomial

cont_const: Initial constant continuum value; Can be only roughly in the order of the continuum level

Parameters: Section "Wavelength solution"

```
[...]
## WAVELENGTH SOLUTION
# Refinement of wavelength solution using a polynomial of degree wlc_n
fit_wlc: 1
# Polynomial degree of the refined wavelength solution
wlc_n: 3
# Initial constant term for wavelength correction (shift relative to half
# wavelength range)
wlc_const: 0.
[...]
```

fit_wlc: Defines whether the wavelegth grid should be fitted with a Chebyshev polynome

wlc_n: degree of Chebyshev polynomial

wlc_const: Initial constant term for the wavelength correctopm

Parameters: Section "Resolution"

[...]

```
## RESOLUTION
# Fit resolution by boxcar -- 1 = yes; 0 = no
fit_res_box: 0
# Initial value for FWHM of boxcar relative to slit width (>= 0. and <= 2.)
relres_box: 0.
# Voigt profile approximation instead of independent Gaussian and Lorentzian
# kernels? -- 1 = yes; 0 = no
kernmode: 0
[...]</pre>
```

fit_res_box: Defines whether the Line Spread Function (LSF) kernel should contain a boxcar component

relres_box: Initial value for the BOXCAR component relative to the slit width

kernmode: molecfit can fit the line profile by either a Voigt profile, or by independent Gaussian/Lorentzian kernel

Parameters: Section "Resolution"

[...]
Fit resolution by Gaussian -- 1 = yes; 0 = no
fit_res_gauss: 1
Initial value for FWHM of Gaussian in pixels
res_gauss: 1.
Fit resolution by Lorentzian -- 1 = yes; 0 = no
fit_res_lorentz: 0
Initial value for FWHM of Lorentzian in pixels
res_lorentz: 0.5

[...]

fit_res_gauss:

rel_gauss: Initial value for FWHM of the GAUSSIAN component

fit_res_lorentz:

res_lorentz: Initial value for FWHM of the LORENTZIAN component

Parameters: Section "Instrumental parameters"

[...]
INSTRUMENTAL PARAMETERS
Slit width in arcsec (taken from FITS header if present)
slitw: 0.4
slitw_key: ESO INS SLIT1 WID
Pixel scale in arcsec (taken from this file only)
pixsc: 0.086
pixsc_key: NONE
[...]

slitw: Slit width in arcsec (taken from FITS header if present)

slitw_key: fitsheader keyword describing the slit width

pixsc: Pixel scale in arcsec

pixsc_key: fitsheader keyword describing the pixel scale

Parameters: Sections "Ambient parameters" and "Atmospheric profiles"

These sections incorporate parameters describing the date/time of the observations, the airmass, atmopsheric state during the time of the observations (r_H , P, T, M1 temperature,...), longitude/latitude of observatory,

Mostly taken from fits header keyword (,,<parameter>_key"), or should not be modified.