

DRS: X-shooter consortium → ESO
Physical model: P. Bristow
IFU: A. Modigliani, P. Bristow, J. Vernet.
Reflex upgrade: A. Modigliani, D. Bramich,
S. Moehler

X-shooter pipeline recipes

xsh_detlin
xsh_mbias
xsh_mdark
xsh_predict
xsh_orderpos
xsh_mflat

xsh_2dmap
xsh_wavecal
xsh_flexcomp
xsh_respon_<obs mode>
xsh_scired_<obs mode>

Different orientation

Rotation conventions:

- UVB: 180⁰
- VIS: unchanged

• NIR: 90⁰

Frame preparation

associate error (photon and read out noise) and qualifier images

Errors and quality information are propagated thoroughly along the reduction chain

Image Qualifier Definition

NIR comet like spot

Flagged pixels are set by parameter decode_bp

Polynomial model

Polynomials are the classical solution, but:

- Robust fit, but solution may not be good
- Requires homogeneous and dense coverage of calibrations data
- No info on the instrument
- No predictive power

Physical Model

- Simple model, includes mechanical (flexures), thermal, electrostatic functionality.
- Includes all optical components, their dep. with p, n(T,λ). Predicts the spectral format.
- Can interpolate/extrapolate over wide ranges.
- To understand the physics of the instrument.

Reduce X-shooter data with the physical model mode

Applications: simulate data

ThAr spectrum (portion)

Solar+sky lines spectrum (portion)

To simulate data to develop the DRS.

Applications: simulate data

Data

To simulate data to develop the DRS.

Simulation

Physical model use

- Automatic wavelength and spatial scale calibrations.
- Spectral and spatial resampling.
- Model the Sky in stare mode data (Kelson).
- IFU reduction (to resample data).
- Instrument quality control.
- To understand instrument upgrades.

Basic data reduction steps

- **Detection of non-linear pixels**
- Master bias
- Master dark
- Slit arc frames processing
- Response determination & flux calibration

- Use ref. line list & model to predict line positions
- Search lines within a user defined-size box
- Gauss fit in box centered on predicted positions
- Clip low SNR lines
- Clip large residuals lines
- Optimise the physical model
- Fit a polynomial: guess wave and order tables

Pinhole-flat to trace orders

- Filter CRH in box
- Get order X_{max}
- Gauss-fit X_{Gauss}
- Fit polynomial
- Clip residuals
- Iterate poly fit (sigma-clip)

Robust to bad pixels

Orderdef traced orders

Flat-field use (1)

To correct pix-to-pix detector efficiency variations

Flat-field use (2)

To correct blaze illumination (large scale)

Dead pixels

Slit-flat frames processing

- UVB,VIS: corrects oscan. NIR: frame on-off
- Determines & correct each raw for exp. level
- Median stack. Detects order edges traces
- Determines and subtract inter-order backg.
- Detects cold pixels and blemishes

Order edges detection Chunks order (chunk-half-size) Extract data. Moves to sides, till flux drops < flux-thresh Reject edges if SNR < min-snr Or if size < min-order-size 0.100 Poly fit of order 5

Ner Hace

Inter-order background (1)

Order masking.

Sample region 2D poly between order fit of edges. background-poly -degx / degy edges-margin removing outliers (backgroundpoly-kappa)

Inter-order background (2)

Master flat

Inter-order background (3)

Background

9-pinhole processing

9-pinhole processing

- Use ref. line list and FMTCK-optimised model
- Optimise physical model solution
- Get wavelength & spatial dispersion solutions
- Create wavelength and slit maps

Wave & Slit maps

Flexure corrections

Measured on AFC frames (pinhole + Pen-ray). Removed at 1st order.

UVB, VIS: 1000x1000 NIR: entire array pix window =>shift =>anneal

- Overscan correction (UVB, VIS).
- CRH detection.
- Flat-fielding.
- Resampling, extraction, order merging, flux calibration.

Standard extraction

- Extraction slit centered on object trace
- Integrate bad pixels (stdextract-interp-hsize)
- Gaps where many flagged pixels

Flagged pixels handling

- 1. No flagged pixels: sum over all pixels.
- 2. All pixels flagged: S=0, V=0, Q='missing data'
- 3. Some pixel are flagged use only good columns:
- No column→ S=0, V=0, Q='missing data'.
- Some good columns:
- 1. Profile from good cols,
- 2. Opt. scaling factor,
- 3. S= good pix + Interpol.

Q='interpolated flux'

Offset reduction (extended source)

B

Object - Sky. This corrects bias (UVB,VIS), dark levels, and inter-order background.

SKY

Nodding (point-source)

Nodding sky correction

- A: sky(posA) + source
- B: sky(posB) + source
- A-B (B-A) corrects bias, dark, inter-order background, sky on each source spectrum, but leaves positive and negative

Nodding extraction

4-B				
B-A	i constitución de la constitución d			

A-B-shift(B-A) **Rectify.** At this point one can shift and do A-B- shifted(B-A)= 2*source + negatives

Stare mode (point source)

- Remove instrument signature.
- Allowed methods: MEDIAN or a BSPLINE (smooth) fit. On current release we recommend MEDIAN.

Stare Kelson (sky region)

Sky line oversampling

Sky data sorted by wavelength Wavelength axis not parallel to columns → oversampling

Sky model (Kelson)

Flag additional bad pixels after sky correction

Kelson: obj-sky residuals

Kelson: obj-sky residuals (1553 nm)

IFU Geometry

IFU flat slice edges tracing (Scharr filter)

IFU data reduction

- Loop over order(m), λ , s:
- Use wave & slit maps to do $(m, x, y) \rightarrow map(m, s, \lambda)$
- Flux, errors, qual. determined interp. over a kernel
- If order overlaps, fluxes are averaged
- For QC object traces are determined

IFU Data Reduction

No sky correction. No extraction. Planes: spatial information Z-axis: λ

SOS pipeline help

- Docs: <u>www.eso.org/pipelines</u>, recipe man, reflex tutorial, manual, FAQ, slides/hand-outs
- email <u>usd-help@eso.org</u>: description of your problem (doc? Reflex/pipeline reduction?)
 For data reduction problems please provide:
- Rec id, reflex data set ID, input filenames
- Recipe log, command line (param. values)
- HW, OS specifications, pipe id
- More info: image display, spectrum plots.