

Visible MCAO supported spectro-imager: the BATMAN family

Frederic Zamkotsian, Romain Thomas, Julien Zoubian, Carlo Schimd, Sylvain de la Torre, Eric Jullo, Olivier Ilbert, Samuel Boissier, Georges Comte, Jean-Claude Bouret, Delphine Russeil, Audrey Delsanti, Pierre Vernazza, Benoit Neichel

+ BATMAN French-Italian team

¹ Laboratoire d'Astrophysique de Marseille, France
 ² INAF Osservatorio Astronomico di Brera, Italy
 ³ INAF/IASF Bologna, Italy
 ⁴ INAF - Telescopio Nazionale Galileo, Spain
 ⁵ INAF-OAT, Osservatorio Astronomico di Trieste, Italy

VLT AO community days, 20-21 Sept. 2016

Dynamical model reconstruction of local structure growth

- Velocity survey of large galaxies FOV
- \Box z_{spectro} = z_{cosmo} + v_p / c
- $\hfill \square$ By Tully-Fischer, Vmax gives the intrinsic luminosity and then z_c
 - Determination of the dynamical model / structure growth

Instrument parameters

- Complete multiplexing of the FOV
- Optical spectroscopy (R 1500)
 7 velocity meas. across the gal. (0.2-0.4" slits)
- □ Study at z=0.5 (z=1)
- Flux calibration

Nearby galaxies physics

Nearby galaxies characterization (ex: XUV galaxies)

- Short time-scale star formation rate (Halpha), the dust distribution (Balmer ratio), the kinematics, the nucleus physics (AGN vs starburst), abundances)
- □ For instance, study of NGC772
 - central part of gal. / nucleus
 - kinematics of the elongated spiral arms
 - star forming regions in the disk
 - star forming region in the XUV part of gal.
 - comparison with regular part of disk (metallicity, IMF, star forming history)

Instrument parameters

- Complete multiplexing of all regions in the FOV
- Optical spectroscopy (R 1000-1500)

Open clusters: characterization of the stellar content, especially the PDMF (present day mass function)

- Stellar physics and star formation in the Galactic center
- Clusters in the local group (Magellan clouds)
- Spectroscopic analysis of stars
 - distribution of stellar classes/types within the cluster (e.g. does the cluster core harbors the most massive stars?) \rightarrow constraints on IMF scenarios
 - physical distance of the cluster and location with respect to galactic arms (requires flux calibration) \rightarrow constraints on star formation

- establish the evolutionary status of stars in the cluster (HR diagram) \rightarrow pinpoint empirical evolutionary links between different types of stars (e.g. massive dwarfs vs masive giants/supergiants, WRs) \rightarrow test whether single star evolutionary tracks can account for the observed stellar population

- Spectroscopic analysis of the diffuse matter in the cluster
 - derive ionization parameters, abundances,
 - kinematics, selective extinction physics of HII regions etc) VLT AO community days, 20-21 Sept. 2016

Stellar physics

Instrument parameters

- Complete multiplexing of stars in the FOV
- Requires flux calibration
- □ Spatial resolution 0.15" 0.2"
- Optical spectroscopy, R 1500 (5000)

Stellar physics

The EHB (Extreme Horizontal Branch) stars in globular clusters

- Faint blue stars (high Teff, lower luminosity, higher gravities)
- Physics of these objects
 - Variable surface abondance of He
 - Surface gravity
 - Fitting of Balmer lines profiles
 - to Stark effect models

Instrument parameters

- Multiplexing of stars in the FOV
- Optical spectroscopy, R 1500
- Spatial resolution 0.2"
- Imagery for selection of objects (color-magnitude diagram det. by imagery in different bands)

Stellar physics

Binaries: what is the fraction of Mdwarf – WhiteDwarf binaries? Is there a clue to the apparent deficit of isolated WD in cluster populations ?

- Search of WD binaries
- Simultaneously check on normal main sequence binary pop.

Instrument parameters

- Multiplexing of stars in the FOV
- Optical spectroscopy R 500
- Spatial resolution 0.2"
- Very good photometry

Solar system objects

Near Earth Objects detection and characterization

- V = 1.5 arcmin / hour
- \Box mag_{vis} = 16 19
- Simultaneous spectro of G2 stars
- Extension to asteroïds

Instrument parameters

- Imagery: detection and trajectory determination
- Optical spectroscopy R 300 - 500
- Adjustable integration time
- Follow the object

Itokawa (Hayabusa)

BATMAN concept: a MOEMS-based spectro-imager

Multi-object spectroscopy

Multi-object spectroscopy

Texas Instruments DMD

VISITECH

- Most popular MOEMS devices available
- Micro-mirrors
 - 2048x1080 individually tiltable
 - □ 13.68µm pixel pitch,
 - □ Tilt angle of 12°
- Numerous applications
 - Prime use displaying images
 - No customization possible
- Space qualification tests (ESA contract) CONTRACT
 - □ -40°C in 10⁻⁵ mbar vacuum
 - Micro-mirrors in position for > 1500s
 - DMD fully operational
 - 1038 hours life test, radiations, vibrations
 - No show-stopper for space application

Zamkotsian et al., SPIE 6884, 2008 VLT AO community days, 20-21 Sept. 2016

Parameters (BATMAN at TNG)

Field of view	6.8 arcmin x 3.6 arcmin	
Focal ratio	F/4 on DMD (scale = 0.2 arcsec per micromirror)	
Beams on DMD	incoming light at normal incidence out-coming light at 24° DMD orientation at 45°	
Wavelength range	400 - 800 nm	
Spectral resolution	R = 560 for 1 arcsec object (typical slit size)	
Two arms instrument	one spectroscopic channel one imaging channel	
Detectors	Two 2k x 4k CCDs	

Optical design

Simulated spectra

Simulated spectra (400 – 800 nm)

BATMAN: the opto-mechanics

General design

Zamkotsian et al., SPIE 9908, 2016

nunity days, 20-21 Sept. 2016

BATMAN: the opto-mechanics

VLT AO community days, 20-21 Sept. 2016

BATMAN: the opto-mechanics

General design

Detector

Instrument software

Mirrors / grating

Fore-optics

Detector

Mirrors mount

VLT AO community days, 20-21 Sept. 2016

On-sky by end 2017

VLT AO community days, 20-21 Sept. 2016

ROBIN: imagery

ROBIN: slits

ROBIN: spectra

Spectrum on 1.5 detector pixel (8,3µm) in 450-650nm wavelength range

ROBIN: spectra

La La Community days, 20-21 Sept. 2016

BATMAN for TNG

BATMAN for VLT

BATMAN for VLT

BATMAN for VLT

FOV = 12 x [1 x 1 arcmin2] or any combination in wavelength bands

BATMAN unique abilities

Large FOV

- Single large FOV
- Segmented FOV

SNR-limited observation

- New observational mode
- Optimize scientific return
- Homogeneous samples, easier to reduce

Versatility IN the FOV

- MOS + IFU + Imagery
- Photometric calibration quasi-simultaneous
- Photometric selection / z selection with the imagery
- Transients live detection and characterization
- Spatial and spectral resolution diversity in the FOV

Visible + IR ?

Parameters BATMAN for VLT3: TBD

Field of view	1 x 1 arcmin2 ++ ?	
Focal ratio	F/4 on DMD (scale = 0.2 arcsec per micromirror)	
Beams on DMD	incoming light at normal incidence out-coming light at 24° DMD orientation at 45°	
Wavelength range	400 - 800 nm + IR ?	
Spectral resolution	R = 500 - 1500 up to 5000 ?	
Two arms instrument	one spectroscopic channel one imaging channel	
Detectors	Two 2k x 4k CCDs	

Visible MCAO supported spectro-imager: the BATMAN family

Frederic Zamkotsian, Romain Thomas, Julien Zoubian, Carlo Schimd, Sylvain de la Torre, Eric Jullo, Olivier Ilbert, Samuel Boissier, Georges Comte, Jean-Claude Bouret, Delphine Russeil, Audrey Delsanti, Pierre Vernazza, Benoit Neichel

+ BATMAN French-Italian team

¹ Laboratoire d'Astrophysique de Marseille, France
 ² INAF Osservatorio Astronomico di Brera, Italy
 ³ INAF/IASF Bologna, Italy
 ⁴ INAF - Telescopio Nazionale Galileo, Spain
 ⁵ INAF-OAT, Osservatorio Astronomico di Trieste, Italy

VLT AO community days, 20-21 Sept. 2016

Extra-slide, MIRA: the European Micro-Mirror Array

Δ

LABORATOIRE D'ASTROPHYSIQUE DE MARSEILLE

Waldis et al., SPIE 6887, 2008

Canonica et al., JMM, 2013