

Recent progress and future development of Nobeyama 45-m Telescope

Masao Saito: Director of Nobeyama Radio Observatory Tetsuhiro Minamidani: Nobeyama Radio Observatory

Nobeyama Radio Observatory

Outline

- Nobeyama 45-m Telescope
- Recent Progress
- Future Development

Nobeyama 45-m Telescope

NOBEYAMA Nobeyama 45-m Telescope

Nobeyama Radio Observatory (NRO)

- <u>2014 July Spec.</u>
- 1350 m altitude
- 45m Diameter
- Optics: Beam waveguide
- Pointing accuracy: 2-3"
- Surface accuracy: 180 μm
- Beam size: 14" @ 115GHz
- η_A: 0.25 @ 110 GHz
- 9 Receivers (20 116 GHz)
- Analog/Digital Backend
- Open-use

国立天文台 🦯

Recent Progress

- •Holography
- •Optics
- •New Multi-beam Receiver

Issues

• Large surface errors : 180 μm rms.

• High antenna noise temperature: 30 K

• Single pixel Rx only

• Too redundant system

NOBEYAMA Surface Adjustment

• 180 μ m rms \rightarrow 100 μ m rms (nominal) • η_A :0.25 -> 0.35 at 110 GHz

Gothenburg

These two mirrors are degraded.

May. 27, 2016

ALMA Developers' Workshop @ Gothenburg

NA Put (Stick) metal foils to M2 and MBINS

国立天文台 🥖

- Put (Stick) metal foils to M2 and M3
- Tsys is reduced by ~ 11K @ 3mm

May. 27, 2016

ALMA Developers' Workshop @ Gothenburg

"FOREST"

FOur beam REceiver System on 45-m Telescope

- 4-beam x 2-pol.(H/V) x 2-sideband = 16 IFs
- Beam separation ~ 50"
- Beam size ~ 14" @ 115GHz
 - IF: 4-12 (4-11) GHz → simultaneous ¹²CO, ¹³CO, C¹⁸O observation
- Dewar rotation system to track same sky position

ALMA Developers' Workshop @ Gothenburg

(Minamidani et al. in prep.)

FOREST

13

FOur beam REceiver System on 45m-Telescope

•4-beam x 2 pol. x 2SB = 16IF

•Beam separation ~ 50"

2016, Jan. 06: Started Open Use Observations

•IF 4 – 12 (4-11) GHz

Receiver	TZ	FOREST
# of Beams	2 (1)	4
Sidebands	2SB	2SB
Polarization	Dual	Dual
IF freq. [GHz]	4 – 8	4 – 12 (11)
Trx (SSB) [K]	~ 50	~50
Tsys (SSB) [K]	~ 150	~ 150
Mapping Eff.	1	4

Decommission old systems

- S80: SSB SIS at 80 GHz
- S100: SSB SIS at 100 GHz
- BEARS: 25 DSB receiver
- AC45: Digital Spectrometer

Issues

- Large surface errors: 180 μ m ($\eta_{A,110 \text{ GHz}}$:0.25) – Improved to be 100 μ m ($\eta_{A,110 \text{ GHz}}$:0.35)
- High antenna noise temperature: 30 K
 - Reduced to be 19 K (w/o atmosphere)
- Single pixel Rx only
 - Expanded to be 4 pixels

15

Overall a factor of 10 improvement in 3 mm mapping obs — Reduce redundancy

Future Development

NOBEYAMA Near-Future Development

- Hardware
 - Decommissioning of S40, TZ
 - Providing Z45/Polaris to community
 - Providing SAM45 spectral window mode
 - Developing metrology system (under discussion)
- Software
 - Expand remote observation
 - Move to CASA and single dish pipeline
 - decent archive system

OPEN USE

Internal Use

Near Future System

国立天文台 🥖

NA

Future Development

- Possible Development Items
 - More beams (pixels)
 - Large Heterodyne Array
 - Wider frequency coverage like Band 2/3
 - More advanced spectrometers (bandwidth/bits)
 - ROACH (FPGA) spectrometer ?
 - GPU spectrometer (KASI) Iguchi-san' talk
 - VLBI at millimeter wavelengths

New Discovery?

20

ALMA Developers' Workshop @ Gothenburg

Summary

- Nobeyama 45-m telescope (34 yrs old)
 - One of the largest single dish antennas operated at 20-116 GHz.
- Recent Progress
 - Surface accuracy improved
 - Optics loss improved
 - Four-beam multi-receiver available for open-use
- Future Developments of the Nobeyama 45-m Telescope
 - On-going/planned updates will be finished in coming 2-3 years
 - Z45 with polarization capability at 7 mm
 - More Flexible Auto-correlator setup
 - Remote Observations
 - Move to CASA and pipeline
 - Future upgrade items
 - More beams (pixels) at 3 mm?
 - Wider bandwidth with more bits spectrometers (bandwidth) ?
 - VLBI in millimeter wavelengthspers' Workshop @ May. 27, 2016 Gothenburg