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Solar system formation and cosmochemistry

Understanding the formation of planetary systems: from collapse of protosellar cores

to the formation of solids and their assembly into asteroids and planets
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A new era in astrophysics: diversity of planets
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How does nature do it?



A new era in astrophysics: diversity of planets

Our solar system...

How does nature do it?



A new era in astrophysics: diversity of planets

Initial conditions for terrestrial planet formation




A new era in astrophysics: diversity of planets

Initial conditions for terrestrial planet formation




A time-window into solar system processes

Meteorites and their components provide the ONLY means to probe the
earliest formative stages of the Sun and its protoplanetary disk

Primitive meteorites Differentiated asteroids iron meteorites

Refractory

) . crust
inclusion

Matrix

Chondrule

Nucleosynthetic make-up of molecular cloud (MC)

Timescale of MC collapse Asteroid accretion efficiency
Formation of the Sun and protoplanetary disk Timing of accretion and differentation
Thermal evolution of protoplanetary disk Mechanism(s) of planetary differentaition

Huge potential — but need to interpret the meteorite record in the context of

a collapsing MC evolving into a young star and its protoplanetary disk :
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Short-lived radionuclides

Former presence of now-extinct radionuclides in meteorites provides insights
into the astrophysical environment of solar system formation, chronology of
solid formation and thermal history of asteroidal bodies.

Table 1 Short-lived radioactive nuclides once existing in solar system objects.”

Fractionation® Parent Half-life Daughter Estimated initial solar Objects found in
nuclide (Myr) nuclide system abundance
*ICa 0.1 K 107% % “Ca CAls
3 2641 0.7 Mg (4.5 % 107%) x ?7Al CAISs, chondrules, achondrite
2 1%Be 1.5 1°g (~6 X% 107%) X °Be CAIs
Z. A 3Mn 3.7 BCr (~2-4 % 10_5) X >Mn CAISs, chondrules, carbonates, achondrites
“Fe L5 ONi (~3x1077) x *°Fe achondrites, chondrites
%w 107pq 6.5 10770 (~5 x 107%) x 1%8pq iron meteorites, pallasites
S 182yf 9 182y 107* x '8°Hf planetary differentiates
E, 291 15.7 129%e 1074 x 271 chondrules, secondary minerals
A 2ZNb 36 27 10" *x Nb chondrites, mesosiderites
82 Fission products (7% 1073 x 2¥U CAISs, chondrites

192Nd 9% 10~ % x ¥7Sm chondrites

T A

forsterite”

1 mm




The °Al-to-**Mg decay system (T, ,,~ 0.7 Myr)

Former presence of now-extinct radionuclides in meteorites provides insights
into the astrophysical environment of solar system formation, chronology of
solid formation and thermal history of asteroidal bodies.
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But the reality is much more complex...
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Realistic simulations of evolving GMCs
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Binary (un)mixing of dust components?

The correlated isotope anomalies may represent binary un-mixing of physically well-
homogenized dust components: a new supernova dust component (multiple SNe) and
an older galactic background component
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Binary (un)mixing of dust components?

The correlated isotope anomalies may represent binary un-mixing of physically well-
homogenized dust components: a new supernova dust component (multiple SNe) and
an older galactic background component

New supernovae dust component

Gaseous reservoir
enriched in °Al,
43Ca, “Ca and “¢Ca

Solar average

26A|

Earth

Dust reservoir
depleted in 25Al,
43Ca, “Ca and “8Ca

Old ISM dust component

43/46/480 a



Dust dichotomy: old vs new

Model requires two generation of dust with different thermal properties. New
(freshly synthesized) SN dust is thermally unstable and can be affected by thermal
processing. Old dust processed in ISM (warm ISM?) and is more refractory.

Model 1: distinc dust grains Model 2: new dust over old dust grains

. new dust - SN component

. old dust - galactic background component



Chondrite components — CAls & chondrules

amoeboid olivine aggregate

remelted condensates Ca,ALSIO;-
Ca,MgSi,0,

_ & Early-formed gas condensates

’ \‘ 8 25Al-rich CAls (canonical)
26Al-poor CAls (FUNSs)
Perhaps formed within 2,500 years
Evidence for 1°Be — innermost PPD
o B E s Present in carbonaceous chondrites
/it 55,008 Y Nearly absent in other chondrites

CaAlSi,04

ferrous p(‘)rphy‘r'itic"; ;
Ilvme\)‘f,‘v Molten dust balls
. e In all chondrites
Low [26Al/27Al],
Variable Pb-Pb ages
Disk lifetime

Let’s not worry about the matrix for now... mixture of components
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The U-Pb system: absolute assumption-free ages

 The U-Pb decay system is the only assumption-free
chronometer that provide absolute ages with a resolution of
~200,000 years

O
Solar system
Pb initial ratio

238U — 206p|

235U - 207Pb




Absolute chronology of CAls and chondrules

Chondrule formation started contemporaenously with CAls and lasted about 3 Myr
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Absolute chronology of chondrules — new data

<—CA\I formation | ®
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Age distribution of chondrules (N =11... soon 50!)
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Chondrules as building blocks of planets?

CR chondrite, PCA 91082

matrix
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Johansen et al. (2015), submitted

10%7

Ry, =3119 km

— Ry, = 498 km

10%L — Riy= 199 km ]
----- Collisions -7 -
— — Smallest body i P RESTT

102 — -- Largest body i 4 -

1024

1023

1022

ok

t [Myr]

1107

107

Growth of asteroidal bodies and planetary

embryos by chondrules accretion!



Reduced [%°Al/27Al], level in planet-forming region
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Reduced [?°Al/?’Al], level in planet-forming region

Closest to surface:

Least metamorphosed, some breccias: Reduced CV chondrites
Mid-crust: Agueously altered, more oxidized:
Bali-type oxidized CV chondrites

Allende-type oxidized CV chondrites

Deep crust:

Greatest thermal matamorphism
CK chondrites

Metachondrites

Elkins-Tanton et al. (2011), EPSL 305, 1



Evidence for large scale outward transport

Presence of refractory high-temperature components in the accretion regions of
carbonaceous chondrites (formed beyond snow line) requires efficient outward transport
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26Al-free CAl-like object in comet 81P/Wild 27

Analysis of samples returned from STARDUST mission suggest the presence of early-
formed 26Al-free CAl material in the accretion region of Jupiter-family comets

comet 81P/Wild 2

Anorthite
Calcic pyroxene
Spinel

. Al-Si-rich glass

© Burma spinel

opg] A Anorthite glass

O Miakejima anorthite P
# Coki analyses —

-50 1

-100

0 100 200 300 400 500
z"Allz“Mg

Matzel et al. (2010) Science 328, 483




Using chondrules to track transport

Chondrule are the dominant chondrite constituent and must reflect one of the most
energetic process that operated in the early solar system: precursor material to planets.

CR chondrite, PCA 91082

Are there age variations amongst chondrules
:> from individual chondrite groups? Storage?

U-corrected Pb-Pb dating

Where did chondrules from individual chondrite
:> groups form? Locally? Various distances?

Isotope fingerprinting - using >*Cr as DNA

Chondrites formed in the INNER SS.
= Enstatite and ordinary chondrites

Chondrites formed in the OUTER SS:
=» CV and CR carbonaceous chondrites



Evidence for widespread isotope heterogeneity

The discovery more than 30 years ago of isotopic anomalies in meteorites and their
components indicates inefficient mixing of presolar components in the protoplanetary disk.
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Accretion regions of chondrite classes
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4Cr results: CV, CR, EC + OC chondrules (N=61)
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No (almost) CAl material in inner solar system?
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No (almost) CAl material in inner solar system?
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Protoplanetary disk reservoirs
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Comets &
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Young + old
chondrules
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The conveyor belt paradigm
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Key observations and questions

111111848

Sun born in cluster — GMC has input from multiple SN sources

Thermal processing of dust results in isotope heterogeneity in disk solids

Chondrule formation during lifetime of disk (both inner and outer SS)

Chondrule production promotes the rapid assembly of planetary embryos
Chondrule forming process(es) operating in inner and outer SS
Two transport regimes? Large scale (jet) and small scale (wind)?

Limited inward transport of outer SS material in inner SS?

Giant planet formation creating disk gaps and limiting inward mass transport?



| Com.ets"co'ntain the startfup"material'?

* Pristine, unmodified molecular cloud matter o s \/7 =/
4 = e~

formed in the cold outermost solar system:

Comet 67P/Churyumov-Gerasimenko



| Comets"co'ntain the start-up material?

’ / /
* Pristine, unmodified molecular cloud matter ° e oo g B .
formed in the cold outermost solar system o o ; N
: : o e
= "/'\

Asteroids sample return missions:
JAXA Hayabusa 2: C-type (2019)
NASA OSIRIS-REXx: C-type (2023)

Under evaluation:

Marco-Polo 2D: D-type (2031)

Comet 67P/Churyumov-Gerasimenko



Search of the holy grail — primordial GMC matter?

What is the expected composition of primordial thermally unprocessed GMC
matter? The make-up of the GMC prior to its pollution by stellar-derived 2°Al.
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Van Kooten et al. (2015) Science, submitted



Metal-rich chondrites: samples of the outer SS?

CR chondrites CB chondrites CB/CH chondrites

1441

Bulk CR, CB and CH have large >N enrichments (200 to 1500%o)

CH chondrites contain lithic clast with extreme >N enrichments (5000%o)

CR chondrites contain the highest abundance of presolar grains

CB and CH chondrites parent bodies accrete >5 Myr after T,



The isotope signhature of primordial GMC?

u**Cr (ppm)
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Van Kooten et al. (2015) Science, submitted



The isotope signhature of primordial GMC?

u**Cr (ppm)

300

200

100

-100

(O Isheyevo and CR chondrules
[ ] Isheyevo lithic clasts

[ ] Bulk inner solar system reservoirs

Inner solar system
correlation line

/\ CB chondrules
<> Bulk CR chondrites

| Typical
analytical
uncertainty

u*Mg* (ppm)

0 5 10

Van Kooten et al. (2015) Science, submitted



