Gamma - Ray Astronomy in the 2020s

Stefan Wagner, LSW Heidelberg

Gamma-Ray Astronomy Today The non-thermal universe Forecasting 2020 (CTA) Multiwavelength Context

γ – Ray Astronomy in the 2020s

High – Energy Astrophysics: Relativistic Particles (1950s) 'High – Energy' Photons (1970s) 2015: Astronomy from <100 MHz to >100 TeV

Some object are detected throughout this range \rightarrow >20 orders of magnitude in frequency/energy but (approximately) 40 orders of magnitude in photon density (!)

Gamma-ray Astronomy Today

Different techniques: E < 20 GeV - γ absorbed in atmosphere Only space-borne (mostly pair conversion) COMTEL, EGRET \rightarrow Fermi

> E > 20 GeV atmospheric Cerenkov Enables large collection areas Whipple \rightarrow HESS, MAGIC, VERITAS \rightarrow CTA

E > 10 TeV Water Cerenkov Enables 24h, 2π sr observations

MILAGRO → **HAWK**

The Optical Sky

The TeV Sky

HESS 11833-105 HESS 11834-087

HESS J1837,069 HESS H841-055

HESS 11843-033 HESS 11846-029 HESS 11848-018 HESS 11849-000

HESS 11858+020

HESS 11857+026

...

S HESS IIS14-591

5 HESS J1614-518

HESS 11626-190 HESS 11632-478

HESS 11634 472 HESS J1640-465

HESS HTOP 420

HESS 11113-397

HESS 31718-385

HESS 11616-508

HESS IT TOB-416 HESS JITLA 385

HESS J1713-381

HESS 11731-347

HESS 11745-203

HESS 11741-302

-

HESS 11745-290 HESS JITAT-281

HESS J1804-216 HESS 11809-193

HESS 11813-178

HESS 11826-148

.

HESS 11825-137

HESS JIA18-609

HESS 11356-645

HESS J1420-607 HESS J1427-608

HESS JILAP-624

HESS 11507-622

(c) F. Acero & H. Gast

The TeV Sky

IESS J1834-087

11837-069

HESS J1841-055

HESS J1843-033

HESS 11846-029 HESS J1848-018

HESS 11849-000

HESS 11858+020 HESS 11857+026

55 11833-105

Understand physics/measure parameters of known sources

SS JI 418-609

11420-607

11427-608

HESS HAAD OF

HESS 11507-622

HESS JISLA.591

HESS 11356-645

IESS J1614-518

511632 SS 11634

IESS 11616-508

HESS 11708-416 HESS ITTLA-385

> HESS HTOP 420 HESS 11713-397

HESS 11718-385

HESS J1713-381

HESS HTSL 347

IESS

1745:30

HESS JITAL-302

TESS

HESS 11804-216 HESS 11809-193 HESS 11813-178

HESS 11826-148

311825-137

HESS

Understand physics of CR ε_B ϵ_{kin} $\epsilon_{\rm CR}$ €_{rad}

Explore the unknowns New regime/sources/physics

(c) F. Acero & H. Gast

γ – ray Astronomy Today

In the last decade the field joined mainstream astrophysics: Images: Morphology, Astrometry Spectra, Broad-band Coverage Lightcurves (msec - years) Surveys, Populations, Catalogs VHE-dominated sources

Gamma-Ray Astronomy in the 2020s

Stereoscopic Cherenkov imaging

Imaging Cherenkov Astronomy

Sample camera pixels; Identify shower; Trigger other telescopes; Record images; Measure image parameters; Discriminate photons; Reconstruct shower (energy, location, time); → Record **one** VHE photon (every 100 sec)

integrate images:

Gamma-Ray Astronomy in the 2020s

ESO in the 2020s January 2015, Garching

The Non-thermal Universe

The Non-thermal Universe

Cosmic Ray Acceleration

- How and where are particles accelerated?
- How do they propagate?
- What is their impact on the environment?

Probing Extreme Environments

- Processes close to neutron stars and black holes?
- Processes in relativistic jets, winds and explosions?
- Exploring cosmic voids

Physics Frontiers – beyond the SM

- What is the nature of Dark Matter? How is it distributed?
- Is the speed of light a constant for high energy photons?
- Do axion-like particles exist?

Cosmic Ray Acceleration

- What are the sites of particle acceleration in the Milky Way? (origin of Galactic Cosmic Rays)
- What are the sites of acceleration in jets and lobes of AGN?
- Where do UHECRs originate from?
- What are the mechanisms of CR acceleration?
- How do they propagate?
- What is their impact on the environment?

(Shell-type) Supernova Remnants

Global SED and close morphological match strongly support a hadronic origin of gamma emission of CR-ISM (pp) interaction.
 Alternative leptonic explanation (IC emission) must contribute at some level (which can be quantified with future instrumentation).

Gamma-Ray Astronomy in the 2020s

ESO in the 2020s January 2015, Garching

Cosmic Ray Origin

Quantitative understanding of cosmic ray spectra & yield Presumably only very young SNR accelerate to 10¹⁵eV; only a handful of these currently active in our Galaxy Energy and shape of cutoffs ?

Probing escape of CRs from SNR using ambient gas

current instruments probe SNR only up to few kpc

Cosmic Ray Origin

Quantitative understanding of cosmic ray spectra & yield Presumably only very young SNR accelerate to 10¹⁵eV; only a handful of these currently active in our Galaxy Energy and shape of cutoffs ? Probing escape of CRs from SNR using ambient gas

CTA shall see SNR in the whole Galaxy

Tracing Acceleration in the Cosmos

(Local) Milky Way – Stellar Winds, Shocks (massive stars and their leftovers)

Nearby Galaxies – individual sources (other environments)

Starburst-Galaxies (effects on galaxy evolution?)

→ NGC 253, M82

Shocks on larger scales (groups/clusters)?

Tracing Acceleration in the Cosmos

Tracing Acceleration in the Cosmos

(Local) Milky Way – Stellar Winds, Shocks (massive stars and their leftovers)

Nearby Galaxies – individual sources (other environments) → LMC (H.E.S.S. Collaboration, *Science*, 22Jan2015)

Starburst-Galaxies (effects on galaxy evolution?)

→ NGC 253, M82

Shocks on larger scales (groups/clusters)?

The biggest bubbles

Gamma-Ray Astronomy in the 2020s

ESO in the 2020s January 2015, Garching

Probing Extreme Environments

Processes close to neutron stars and black holes?

- Pulsed emission from Neutron Stars
- SMBH ergospheres

Processes in relativistic jets, winds and explosions?

- GRBs
- AGN jets
- Shocks
- Exploring cosmic voids
 - Contents
 - Evolution

The stellar remnants

Fermi-LAT 2nd Pulsar catalog

S. Wagner

"Persistent GRBs"

Flares by factors > 100 on time-scales of minutes (PKS 2155-304, HESS; Mrk 501, MAGIC; Mrk 421, VERITAS)

Variability time-scales and BH mass: 300 nano-sec per solar mass Causality-inferred diameter ~ 100 million km, ie < 1 AU <<< 1 pc

Grazing the horizon?

- \rightarrow Timescale x c << Rs
- \rightarrow Doppler factors > 100 near SMBH
- \rightarrow Jet acceleration
- \rightarrow Statistics, Isotropy
- \rightarrow Opacity problem

Gamma – ray bursts (E > 30 GeV)

from GRB Science in the Era of CTA (Astroparticle Physics special issue article) Susumu Inoue et al., arXiv:1301.3014

Gamma-Ray Astronomy in the 2020s

ESO in the 2020s January 2015, Garching

Probing Intergalactic Voids

Gamma-Rays interact with background photon field (EBL), reflecting integrated emission from stars. Used to make integrated 'in-situ' measurements of the EBL density.

$$\gamma\gamma \leftrightarrow e^+ e^-$$
 (1 TeV ~ 1 μ m)

Pairs upscatter CMB, enabling measurements of magnetic fields.

Do gamma-ray blazars impact voids?

Intergalactic Magnetic Fields

Imaging: Fields above 10⁻¹²G give rise to detectable pair halos

Spectra/Timing: Fields below 10⁻¹⁵ G give rise to detectable cascades

Blazar-Heating of the IGM?

Image: V. Springel

Plasma waves excited by gamma pair conversion heat extragalactic gas:

104 K → 105 K @ z = 2

Slows down structure formation

Broderick, Chang, Pfrommer arXiv 1106.5494,1106.5504,1106.5505

Frontiers beyond the SM

- What is the nature of Dark Matter?
- What is the mass of the DM particle?
- How is it distributed?
- Is the speed of light constant for high energy photons? (Search for violation of Lorentz invariance)
 Some models of QG predict non-vanishing dispersion for high E.
- Do axion-like particles exist?

Dark matter annihilation

DM annihilation produced gamma-ray continuum and possibly lines \rightarrow mass of DM particle Upper limits on GC and dwarf galaxies CTA will for the first time reach meaningful sensitivity in the TeV range

Gamma-Ray Astronomy in the 2020s

Host galaxy $B \sim \mu G$, $L \sim 1 \text{ kpc}$

Galaxy cluster B ~ μG, L ~ 10 kpc

Axion Search

Intergalactic Medium B < nG, L ~ 1 Mpc

Observable via

Source

B~G,

L ~ 0.1 pc

- Increased photon free path
- Spectral modulation
- Induced anisotropy

[e.g., De Angelis et al., 2007,2011; Mirizzi et al., 2007; Simet et al., 2008; Sanchez-Condé et al., 2009; Horns et al. 2012; Tavecchio et al. 2012]

Milky Way B ~ μG, L ~ 10 kpc

Sunyaev-Zel'dovich effect

Low energies VS High energies

143 GHz 217 GHz 353 GHz

ESO in the 2020s January 2015, Garching

Sunyaev-Zel'dovich effect

143 GHz 217 GHz 353 GHz

ESO in the 2020s January 2015, Garching

Gamma-Ray Astronomyeiqutence 2020 Ez)

500

1000

-0.5

Multiwavelength aspects

Gamma-ray studies provide new information about old friends. They provide measurements of otherwise inferred quantities. Gamma-rays provide new probes of processes and interactions.

Many sources are not identified. Identification via multiwavelength studies. Many sources are variable (a curse and a blessing).

Interpretation needs quantitative information about otherwise inferred quantities (e.g. sizes, densities, velocities, distances).

I refrain from listing specific capabilities/instrumentation (CTA themes not aligned to 'big questions' but require versatile, multipurpose instrumentation on different telescopes.)

Forecasting 2020: CTA observatory

Compared to current instruments: 10 fold improvement in sensitivity 10 fold improvement in usable energy range much larger field of view improved angular resolution Observatory operations, community access

From current arrays to CTA

What to expect?

Performance goals:

Improved sensitivity (> factor 10) Increased Energy range (0.03 - 100 TeV) Improved Energy Resolution Improved Angular Resolution Larger Field-of-view (Survey)

Resolving complex sources

S. Wagner

SN 1006

Gamma-Ray Astronomy in the 2020s

ESO in the 2020s January 2015, Garching

Low-energy section: 4 x 23 m tel. (LST) - Parabolic reflector - FOV: 4-5 degrees energy threshold of some 10 GeV

Possible Configuration

Core-energy array:

24 x 12 m tel. (MST) - Davies-Cotton reflector - FOV: 7-8 degrees mCrab sensitivity in the 100 GeV–10 TeV domain

High-energy section: 30-70 x 4-6 m tel. (SST) - Davies-Cotton reflector (or Dual Mirror design) - FOV: ~10 degrees 10 sq.km area at multi-TeV energies

Requirements & drivers

Comparison of Gamma Detectors

Low Energy Threshold EGRET/Fermi

Space-based (Small Area) "Background Free" Large Duty Cycle/Large Aperture

Sky Survey (< 10 GeV) AGN Physics Transients (GRBs) < 100 GeV <u>High Sensitivity</u> HESS, MAGIC, VERITAS, CTA

Large Effective Area Excellent Background Rejection Low Duty Cycle/Small Aperture

High Resolution Energy Spectra Studies of known sources Surveys of limited regions of sky at a time Large Aperture/High Duty Cycle Milagro, Tibet, ARGO, HAWC

Moderate Area Good Background Rejection Large Duty Cycle/Large Aperture

Unbiased Sky Survey Extended sources Transients (GRB's) Solar physics/space weather

Gamma-Ray Astronomy in the 2020s

ESO in the 2020s January 2015, Garching

Differential Flux Sensitivity I

ESO in the 2020s January 2015, Garching

Differential Flux Sensitivity II

CTA scheduling

Monitoring 4 telescopes

TeV survey using MSTs PeV Deep Field using SSTs GeV observations using LSTs

Monitoring 1 telescope

- Queue mode scheduler taking into account actual sky conditions, subarrays & conditions requested in proposal, TOOs
- Typical time per pointing ~20 min, up to few h per night on given target (energy threshold increases rapidly for larger zenith angles)

Summary

High-Energy Astrophysics has been pushed to 100 TeV. Astronomical sources are studied in detail at high energies. Gamma-data reveal new insights into old questions. Gamma-rays allow exploration of new phenomena.

New opportunities for everybody:

High-impact Fermi results come from the general community.
Ground based gamma-ray science with new observatory.
The CTA observatory is proposed as a new infrastructure.
It shall provide access based on peer-reviewed proposals and an open access to archival data.

CTA has completed its preparatory phase, a legal entity has been founded and operates the project office (Heidelberg), preparing for a founding agreement for the observatory.