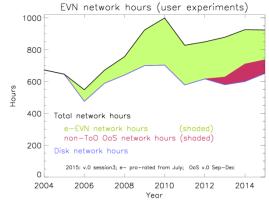
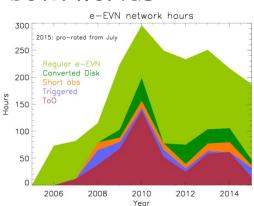

VLBI Techniques

Bob Campbell, JIVE

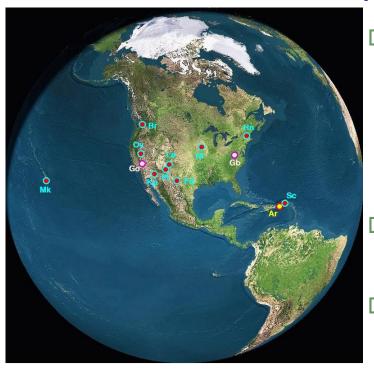
- □ VLBI Arrays: a brief tour
- □ Model / delay constituents
- Getting the most out of VLBI phases
 - Observing tactics / propagation mitigation
- Wide-field mapping
- Concepts for the VLBI Tutorial

The EVN (European VLBI Network)

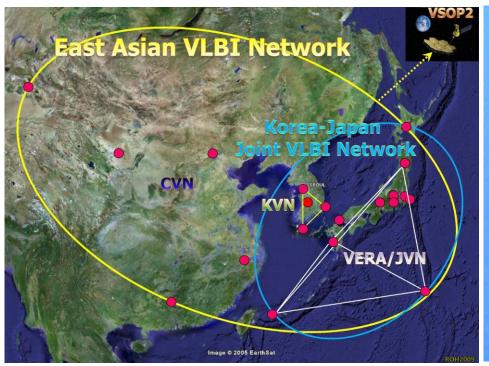

- Composed of existing antennas
 - generally larger (32m 100m): more sensitive
 - baselines up to 10k km (8k km from Ef to Shanghai, S.Africa)
 - down to 17 km (with Jb-Da baseline from eMERLIN)
 - heterogeneous, generally slower slewing
- □ Frequency coverage [GHz]:
 - workhorses: 1.4/1.6, 5, 6.0/6.7, 2.3/8.4, 22
 - niches: 0.329, UHF (~0.6-1.1), 43
 - frequency coverage/agility not universal across all stations
- □ Real-time e-VLBI experiments
- Observing sessions
 - Three ~3-week sessions per year
 - ~10 scheduled e-VLBI days per year
 - Target of Opportunity observations

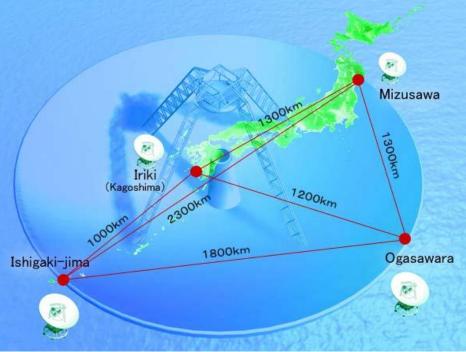

EVN Links

- □ Main EVN web page: www.evlbi.org
 - **EVN Users' Guide:** Proposing, Scheduling, Analysis, Status Table
 - EVN Archive
- □ Proposals: due 1 Feb., 1 June, 1 Oct. (23:59:59 UTC)
 - via NorthStar web-tool: proposal.jive.eu { .nl}
- □ User Support via JIVE (Joint Institute for VLBI ERIC)
 - www.jive.eu
 - RadioNet trans-national access
- Links to proceedings of the biennial EVN Symposia:
 - www.evlbi.org/meetings
 - History of the EVN in Porcas, 2010, EVN Symposium #10

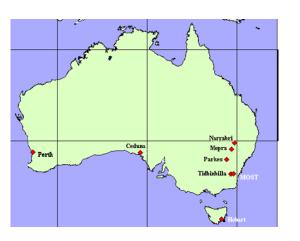

Real-time e-VLBI with the EVN

- Data transmitted from stations to correlator over fiber
- Correlation proceeds in real-time
 - Improved possibilities for feedback to stations during obs.
 - Much faster turn-around time from observations → FITS; permits EVN results to inform other observations
 - Denser time-sampling (beyond the 3 sessions per year)
 - EVN antenna availability at arbitrary epochs remains a limitation
- □ Disk-recorded vs. e-VLBI: different vulnerabilities
 - e-shipping approaching best of both worlds

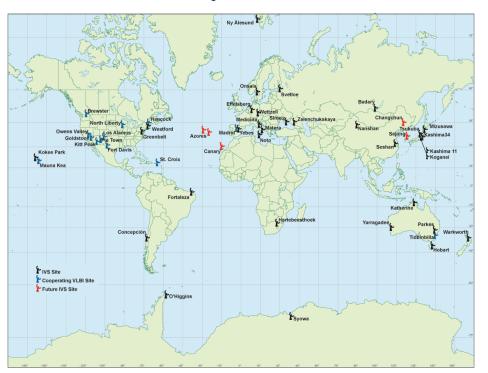

The VLBA (Very Long Baseline Array)



- Homogeneous array (10x 25m)
 - planned locations, dedicated array
 - Bslns ~8600-250 km (~50 w/ JVLA)
 - faster slewing
 - \blacksquare HSA (+ Ef + Ar + GBT + JVLA)
- Frequency agile
 - down to 0.329, up to 86 GHz
- Extremely large proposals
 - Up towards 1000 hr per year
- Globals: EVN + VLBA (+ GBT + JVLA)
 - proposed at EVN proposal deadlines (1Feb, 1Jun, 1Oct)
 - VLBA-only proposals: 1Feb, 1Aug
- VLBA URL: science.nrao.edu/facilities/vlba


East Asian VLBI Networks

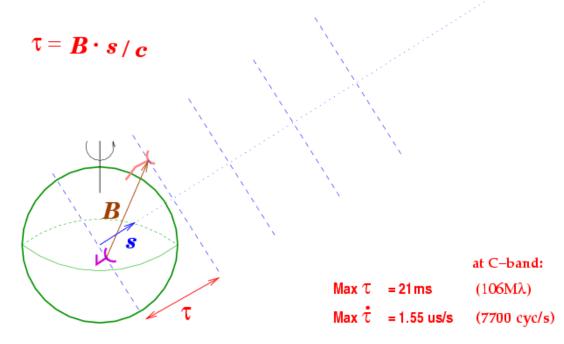
- Chinese (CVN): 4 ants., primarily satellite tracking
- Korean (KVN): 3 ants., simultaneous 22, 43, 86, 129 GHz
- □ VERA: 4 dual-beam ants., maser astrometry 22-49 GHz
 - KaVA == KVN + VERA
- Japanese: various astronomical & geodetic stations



Other Astronomical VLBI Arrays

- Long Baseline Array
 - Only fully southern hemisphere array
 - Can now propose joint EVN+LBA obs
 - growing number of east-Asian EVN stations provide lots of N-S baselines
 - LBA—western EVN ~12k km (< 1 hr)
- □ Global mm VLBI Network (GMVA)
 - Effelsberg, Onsala, Metsahövi, Pico Veleta, NOEMA,
 KVN, (most) VLBAs, Green Bank
- 86 GHz
- ~2 weeks of observing per year
- Coordinated from MPIfR Bonn

IVS (International VLBI Service)


- VLBI as space geodesy
 - cf: GPS, SLR/LLR, Doris
- Frequency: 2.3 & 8-9 some at 8-9 & 27-34
- Geodetic VLBI tactics:
 - many short scans
 - fast slews
 - uniform distribution of stations over globe
- □ VGOS: wide-band geodetic system (4x 2GHz over 2-14 GHz)
 - future: unmatched time-series of geodetic-source images
- □ IVS web page: ivscc.gsfc.nasa.gov
- □ History of geodetic VLBI (pre-IVS):
 - Ryan & Ma 1998, *Phys. Chem. Earth*, <u>23</u>, 1041

Some rule-of-thumb VLBI scales

- \square Representative angular scales: 0.1-100 mas
- Physical scales of interest:
 - Angular-diameter distance $D_A(z)$
 - Proper-motion distance $D_M(z) \rightarrow \mu$ to β_{app} conversion
 - D_A turns over with z (max z~1.6), D_M doesn't
- Brief table (using Planck 2015 cosmology parameters, from J.P. Rachen colloquium, Dwingeloo 11jun2015):

Z	D_A (for 1 mas)	β _{app} (for 0.1 mas/yr)
0.5	6.4 pc	3.1 c
1	8.3 pc	5.4 c
1.6	8.4 pc	7.4 c
3	8.0 pc	10.3 c

VLBI vs. shorter-BI

- □ Sparser u-v coverage
- More stringent requirements on correlator model to avoid de-correlating during coherent averaging
- No truly point-like primary flux calibrators in sky
- Independent clocks & equipment at the various stations

VLBI a priori Model Constituents

- Station / Source positions: different frames (ITRF, ICRF), motions
- Times: UTC; TAI, TT; UT1; TDB/TCB/TCG
- Orientation: Precession (50"/yr), Nutation (9.6", 18yr), Polar Motion (0.6", 1yr)
- Diurnal Spin: Oceanic friction (2ms/cy), CMB (5ms, dcds), AAM (2ms, yrs)
- Tides: Solid-earth (30cm), Pole (2cm)
- Loading: Ocean (2cm), Hydrologic (8mm), Atmospheric (2cm), PGR (mm's/yr)
- Antennas: Axis offset, Tilt, Thermal expansion
- Propagation: Troposphere (dry [7ns], wet [0.3ns]), lonosphere
- Relativistic $\tau(t)$ calculation: Gravitational delay, Frame choice/consistency

VLBI a priori Model: References

- □ IERS Tech.Note #36, 2010: IERS Conventions 2010
 - www.iers.org link via Publications // Technical Notes
- Urban & Seidelmann (Eds.) 2013, Explanatory
 Supplement to the Astronomical Almanac (3rd Ed.)
- IAU Division A (Fundamental Astronomy; was Div.I)
 - www.iau.org/science/scientific_bodies/divisions/A/info
- □ SOFA (software): www.iausofa.org
- Global Geophysical Fluids center: geophy.uni.lu
- □ Older (pre-IAU 2000 resolutions):
 - Explanatory Supplement to the Astronomical Almanac 1992
 - Seidelmann & Fukushima 1992, A&A, 265, 833 (time-scales)
 - Sovers, Fanselow, Jacobs 1998, Rev Mod Phys, 70, 1393

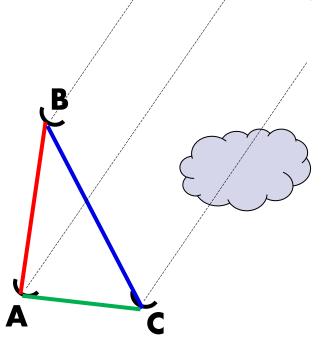
VLBI Delay (Phase) Constituents

Conceptual components:

$$\tau_{\text{obs}} = \tau_{\text{geom}} + \tau_{\text{str}} + \tau_{\text{trop}} + \tau_{\text{iono}} + \tau_{\text{instr}} + \varepsilon_{\text{noise}}$$

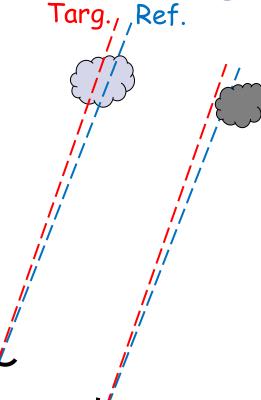
Propagation Instrumental Effects

Source Structure


Source/Station/Earth orientation

$$\tau_{geom}$$
 = -[cos δ {b_x cos H(t) - b_y sin H(t)} + b_z sin δ] / c where: H(t) = GAST - R.A

and of course: $\varphi = 2\pi \omega \tau_p$


for
$$\varphi_{obs}$$
: $\pm N_{lobes}$

Closure Phase

- $\Box \quad \phi_{cls} = \phi_{AB} + \phi_{BC} + \phi_{CA}$
- \square Independent of station-based $\triangle \varphi$
 - propagation
 - instrumental
- But loses absolute position info
 - degenerate to $\Delta \phi_{geom}$ added to a given station
- \Box However, φ_{str} is baseline-based: it does not cancel
 - Closure phase can be used to constrain source structure
 - Point source → closure phase = 0
 - Global fringe-fitting / Elliptical-Gaussian modelling
- Original ref: Rogers et al. 1974, ApJ, 193, 293

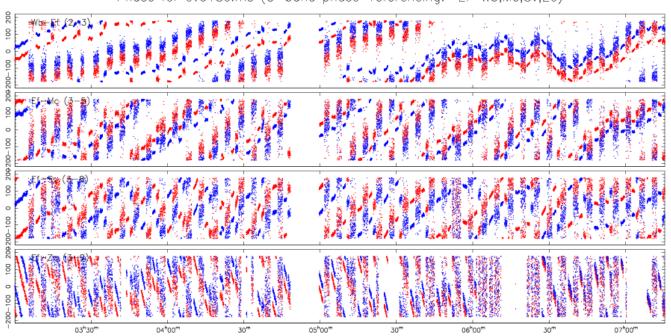
Difference Phase

- Another differential φ measure
 - pairs of sources from a given bsln
- □ (Near) cancellations:
 - propagation (time & angle between sources)
 - instrumental (time between scans)
- There remains differential:
 - φ_{str} (ideally, reference source is point-like)
 - \(\phi_{geom} \) (contains the position offset between the reference and target)
- Differential astrometry on sub-mas scales:
 - → Phase Referencing ←

Phase-Referencing Tactics

- Extragalactic reference source(s) (i.e., tied to ICRF2)
 - Target motion on the plane of the sky in an inertial frame
- Close reference source(s)
 - Tends towards needing to use fainter ref-sources
- Shorter cycle times between/among the sources
 - Shorter slews (close ref-sources, smaller antennas)
 - Shorter scans (bright ref-sources, big antennas)
- □ High SNR (longer scans, brighter ref-sources, bigger antennas)
- □ Ref.src structure (best=none; if not, then not a function of v or t)
- □ In-beam reference source(s) no need to "nod" antennas
 - Best astrometry (e.g., Bailes et al. 1990, Nature, 319, 733)
 - Requires a population of (candidate) ref-sources
 - VERA multi-beam technique / Sites with twin telescopes

Where to Get Phs-Ref Sources

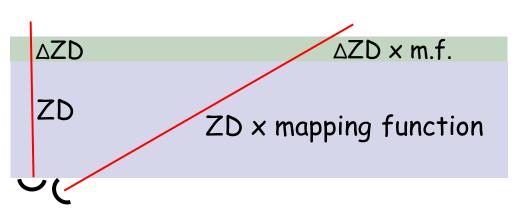

- RFC Calibrator search tool (L. Petrov)
- VLBA Calibrator search tool
 - Links to both via www.evlbi.org
 - under: VLBI links // VLBI Surveys, Sources, & Calibrators
 - List of reference sources close to specified position
 - FD's (var. v's) on short & long |B|; Images, Amp(|u-v|)
- Multiple reference sources per target
 - Estimate gradients in "phase-correction field"
 - AIPS memo #111 (task ATMCA)
- ☐ Finding your own reference sources (e-EVN obs)
 - Sensitive wide-field mapping around your target
 - Go deeper than "parent" surveys (e.g., FIRST, NVSS)

Celestial Reference Frame

- Reference System vs. Reference Frame
 - RS: concepts/procedures to determine coordinates from obs
 - RF: coordinates of sources in catalog; triad of defining axes
- □ Pre-1997: FK5
 - "Dynamic" definition: moving ecliptic & equinox
 - Rotational terms / accelerations in equations of motions
- \square ICRS: kinematic \rightarrow axes fixed wrt extra-galactic sources
 - Independent of solar-system dynamics (incl. precession/nutation)
- □ ICRF2: most recent realization of the ICRS
 - IERS Tech.Note #35, 2009: 2nd Realization of ICRF by VLBI
 - 295 defining sources (axes constraint); 3414 sources overall
 - Median σ_{pos} ~ 100-175 μas (floor ~40 μas); axis stability ~10 μas
 - More emphasis put on source stability & structure
- Process to create ICRF3 underway

Faint-Source Mapping

Phase-referencing to establish Dly, Rt, Phs corrections at positions/scan-times of targets too faint to self-cal
 Phase for ev018c.ms (C-band phase-referencing: Ef-Wb,Mc,Sv,Zc)



- Increasing coherent integration time to whole observation
 - Beasley & Conway 1995, VLBI and the VLBA, Ch 17, p.327
 - Alef 1989, VLBI Techniques & Applications, p.261

Differential Astrometry

- Motion of target with respect to a reference source
 - Extragalactic ref.src. \rightarrow tied to inertial space (FK5 vs. ICRF)
 - Shapiro et al. 1979, AJ, 84, 1459 (3C345 & NRAO 512: '71-'74)
- Masers in SFR as tracers of Galactic arms
 - BeSSeL: bessel.vlbi-astrometry.org
- \square Pulsar astrometry (birthplaces, frame ties, n_e)
 - PSRPI: safe.nrao.edu/vlba/psrpi
- Stellar systems: magnetically active binaries, exo-planets
 - RIPL: astro.berkeley.edu/~gbower/RIPL
- PPN γ parameter: Lambert et al. 2009, A&A, 499, 331
- Frame dragging (GP-B): Lebach et al. 2012, ApJS, 201, 4
- □ IAU Symp #248: From mas to µas Astrometry

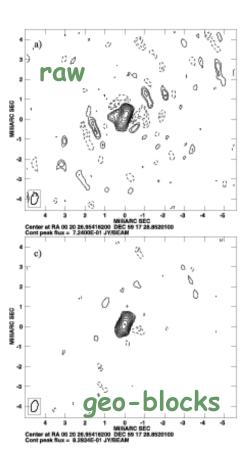
Phs-Ref Limitations: Troposphere

• Saastamoinen Zenith Delay [m] (catmm.f)

$$\begin{array}{ll} \text{Dry:} & \frac{0.0022768 P_{\text{mbar}}}{1-0.00266\cos2\phi-0.00028 h_{\text{km}}} \\ \text{Wet:} & 0.002277 \left(\frac{1255}{T_{\text{c}}+273.16}+0.05\right) \times RH \\ & \times 6.11\exp\left(\frac{17.269 T_{\text{c}}}{T_{\text{c}}+237.3}\right) \end{array}$$

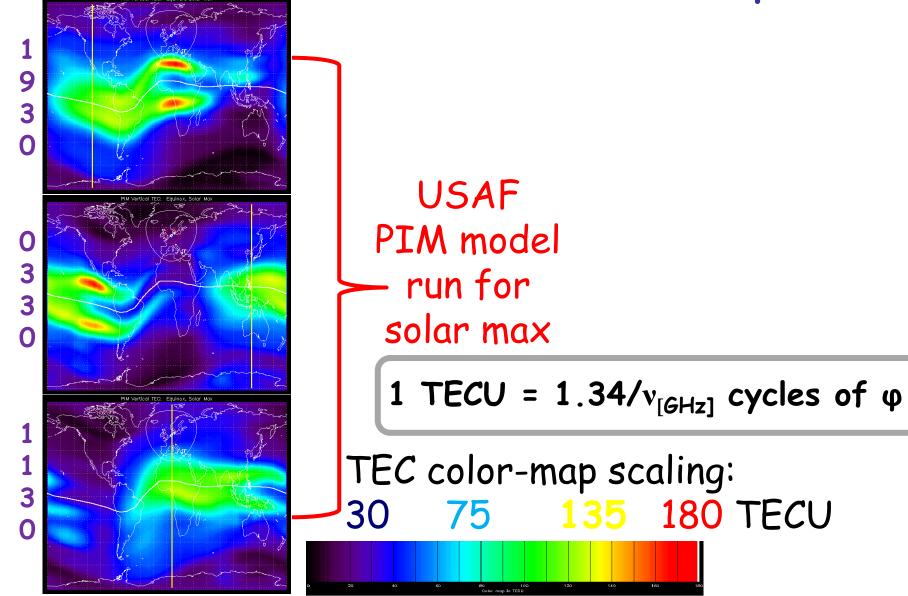
thus:
$$ZD_{\text{dry}} = ZD_d(P, \phi, h)$$

 $ZD_{\text{wet}} = ZD_w(T, RH)$

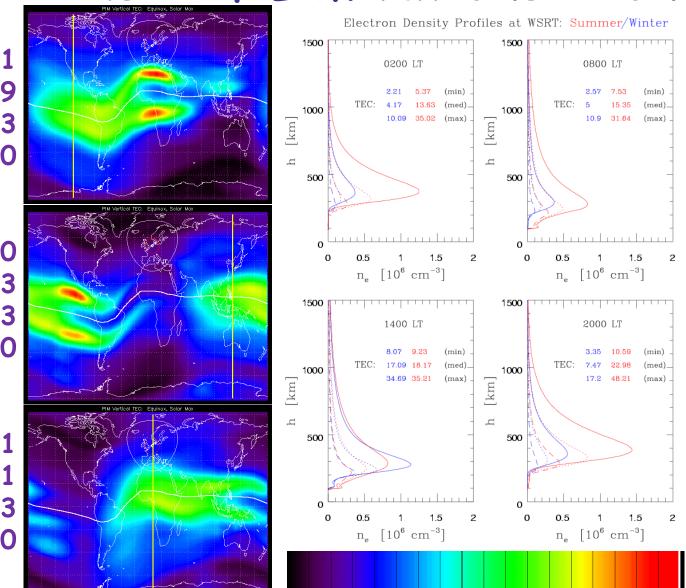

- \square Station \triangle ZD \rightarrow elevation-dependent $\triangle \varphi$
 - Dry ZD ~ 7.5ns (~37.5 cycles of phase at C-band)
 - Wet ZD ~ 0.3ns (0.1—1ns) but high spatial/temporal variability
- Water-vapor radiometers to measure precipitable water along the antenna's pointing direction

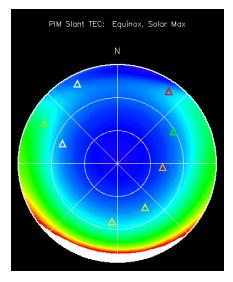
Troposphere Mitigation

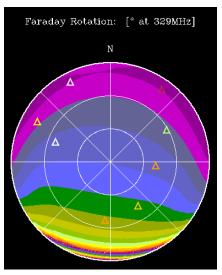
- Computing "own" tropo corrections from correlated data
- Scheduling: insert "Geodetic" blocks in schedule
 - sched: GEOSEG as scan-based parameter
 - other control parameters
 - egdelzn.key in examples
- □ AIPS
 - DELZN & CLCOR/opcode=atmo
 - AIPS memo #110


Brunthaler, Reid, & Falcke 2005, in *Future Directions* in *High-Resolution Astronomy (VLBA 10th anniv.)*, p.455: "Atmosphere-corrected phase-referencing"

□ Numerical weather models & ray-tracing

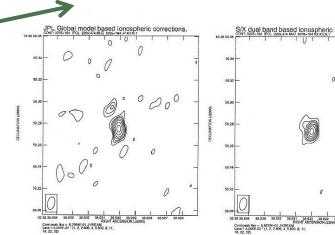

Animation removed: 1 of 2


Phs-Ref Limitations: Ionosphere

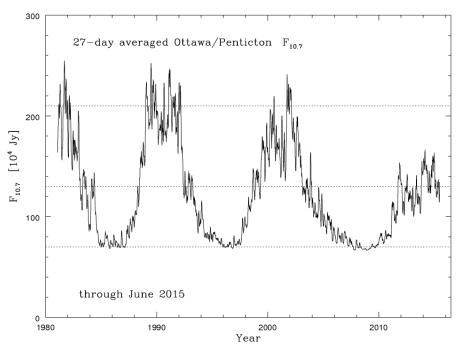


Animation removed: 2 of 2

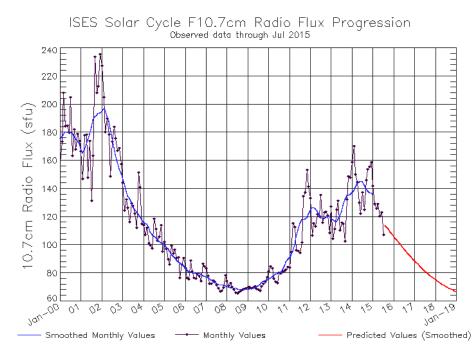
Phs-Ref Limitations: Ionosphere



Ionosphere Mitigation


- Dispersive delay \rightarrow inverse quadratic dependence τ vs. ν
 - Dual-frequency (e.g., 2.3, 8.4 GHz)
 - widely-separated sub-bands (Brisken et al. 2002, ApJ, 571, 906)
- IGS IONEX maps (gridded vTEC)

- 5° long. \times 2.5° lat., every 2 hr
- $h = 450 \text{km} // \sigma \sim 2-8 \text{ TE}CU$
- Based on ≥150 GPS stations
- Various analysis centers' solutions
- AIPS: TECOR
 - VLBI science memo #23
- From raw GPS data:
 - Ros et al. 2000, A&A, 356, 375
- Incorporation of profile info?
 - Ionosondes, GPS/LEO occultations



Ionosphere: Climatology

Prediction for solar cycle: peak ≤ solar-"medium" still 4+ yr to solar-minimum The past few solar cycles: solar 10.7cm flux density

Ionosphere: Equations

Collision-free Appleton-Hartree index of refraction through a cold plasma:

$$\mu_p^2 = 1 - \frac{2X(1-X)}{2(1-X) - Y^2 \sin^2 \theta \pm [Y^4 \sin^4 \theta + 4(1-X)^2 Y^2 \cos^2 \theta]^{\frac{1}{2}}},$$

N.B. μ_p < 1

where θ is the angle between \mathbf{B}_{\oplus} and the direction of propagation, and X and Y relate to the plasma & cyclrotron frequencies:

$$X \equiv \frac{\nu_p^2}{\nu^2}$$
, with $\nu_p^2 = \frac{e^2}{4\pi^2 \varepsilon_0 m_e} n_e \equiv K_p^2 n_e$,
 $Y \equiv \frac{\nu_b}{\nu}$, with $\nu_b = \frac{e}{2\pi m_e} B \equiv K_b B$.

Values of these new K's are: $K_p^2=80.616~\mathrm{m^3\,s^{-2}}$ and $K_b=2.799\times10^{10}~\mathrm{s^{-1}\,T^{-1}}$.

Expanding Appleton-Hartree and dropping terms $< 10^{-12}$ for L-band yeilds:

$$\mu_p \simeq 1 - \frac{X}{2} - \frac{X^2}{8} \pm \frac{XY \cos \theta}{2} - \frac{XY^2}{2} \left(1 - \frac{\sin^2 \theta}{2} \right) + \frac{X^2 Y \cos \theta}{4},$$

where the "+" and "-" of the " \pm " correspond to two propagation modes. Terms of order X, X^2 , Y, Y^2 , Y^3 , XY, X^2Y , and XY^2 were kept in intermediate steps.

$$\tau_p = (\int \mu_p dl)/c$$

$$\mu_g = d (\nu \mu_p) / d\nu$$

Ionosphere: References

- □ Davies, K.E. 1990, *Ionospheric Radio*
 - from a more practical view-point; all frequency ranges
- □ Hargreaves, J.K. 1995, *Solar-Terrestrial Environment*
 - ~senior undergrad science in larger context
- □ Kelly, M.C. 1989, Earth's Ionosphere
 - ~grad science, more detail in transport processes
- □ Schunk, R. & Nagy, A. 2009, Ionospheres
 - same as above, plus attention to other planets
- □ Budden, K.G., 1988, Propagation of Radio Waves
 - frightening math(s) for people way smarter than I...

Troposphere vs. Ionosphere

- Cross-over frequency below which typical ionospheric delay exceeds typical tropospheric delay (at zenith)
 - Troposphere: ~7.8 ns (at sea level, STP)
 - Ionosphere: $-1.34 \, TEC_{[TECU]} / v^2_{[GHz]}$ ns
- \square $v_{cross-over} \sim \sqrt{TEC/5.82}$ GHz
 - can expect different tropo,iono vertical→slant mapping functions
- for some representative TECs:

TEC [TECU]	Cross-over V [GHz]
10	~1.3
50	~2.9
100	~4.1

Wide-field Mapping: FoV limits

- \Box Residual delay, rate \rightarrow slopes in phase vs. freq, time
 - Delay = $\partial \varphi / \partial \omega$ [i.e., via Fourier transform shift theorem;
 - Rate = $\partial \phi / \partial t$ 1 wrap of ϕ across band = 1/BW [s] of delay)
- \Box Delay (& rate) = function of correlated position:

$$\tau_0 = -[\cos \delta_0 \{b_x \cos(t_{sid} - \alpha_0) - b_y \sin(t_{sid} - \alpha_0)\} + b_z \sin \delta_0] / c$$

 As one moves away from correlation center, can make a Taylor-expansion of delay (& rate):

$$\tau(\alpha,\delta) = \tau(\alpha_0,\delta_0) + \Delta\alpha(\partial\tau/\partial\alpha) + \Delta\delta(\partial\tau/\partial\delta)$$

- □ → leads to residual delays & rates across the field, increasing away from the phase center.
- □ → leads to de-correlations in coherent averaging over frequency (finite BW) and time (finite integrations).

Wide-field Mapping: Scalings

□ To maintain ≤10% reduction in response to point-source:

$$FoV_{
m BW} \lesssim rac{49.5 N_{
m frq}}{B_{
m 1000km} \cdot BW_{
m SB_{MHz}}} \qquad FoV_{
m time} \lesssim rac{18.5 \lambda_{
m cm}}{B_{
m 1000km} \cdot t_{
m int}}$$

- Wrobel 1995, in "VLBI & the VLBA", Ch. 21.7.5
- Scaling: BW-smearing: inversely with channel-width time-smearing: inversely with t_{int}, obs. Frequency
- \square Data size would scale as $N_{frq} \times N_{int}$ (e.g., ∞ area)
 - Record for single experiment correlated at JIVE = 5.32 TB
 - Expected record for an on-going multi-epoch exp. = 14.71 TB

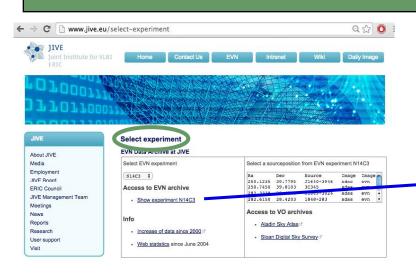
WFM: Software Correlation

- \square Software correlators can use almost unlimited N_{frq} & t_{int}
 - PIs can get a much larger single FoV in a huge data-set
- Multiple phase-centers: using the extremely wide FoV correlation "internally", and steering a delay/rate beam to different positions on the sky to integrate on smaller sub-fields within the "internal" wide field:
 - Look at a set of specific sources in the field (in-beam phs-refs)
 - Chop the full field up into easier-to-eat chunks
- As FoV grows, need looms for primary-beam corrections
 - EVN has stations ranging from 20 to 100 m

Space VLBI: Orbiting Antennas

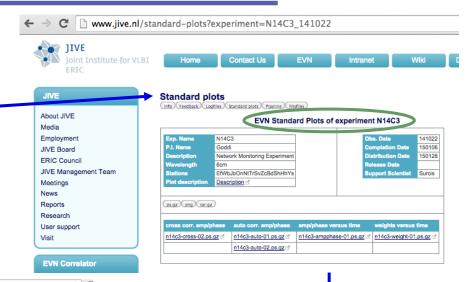
- □ (Much) longer baselines, no atmosphere in the way
- □ HALCA: Feb'97 Nov'05
 - Orbit: r = 12k-27k km: P = 6.3 hr: $i = 31^{\circ}$
- □ Radio Astron: launched 18 July 2011
 - Orbit: r = 10-70 k km 310-390 k km; $P \sim 9.5 \text{d}$; $i = 51.6^{\circ}$
 - 329 MHz, 1.6, 5, 22 GHz
 - www.asc.rssi.ru/radioastron
- Model/correlation issues:
 - Satellite position/velocity; proper vs. coordinate time
- □ Planned future mission: Millimetron (0.02-17 mm; ≥ 2019)

Space VLBI: Solar System Targets

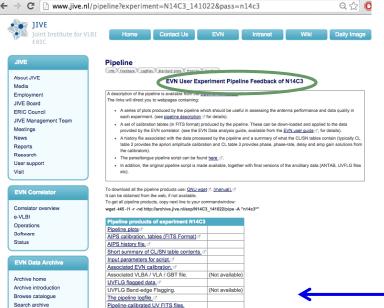

- Model variations
 - Near field / curved wavefront; may bypass some outer planets
 - e.g., Duev et al. 2012, A&A, <u>541</u>, 43
 Sekido & Fukushima 2006, J. Geodesy, <u>80</u>, 137
- Science applications
 - Planetary probes (atmospheres, mass distribution, solar wind)
 - Huygens (2005 descent onto Titan), Venus/Mars explorers,
 MEX fly-by of Phobos, BepiColombo (Mercury)
 - Tests of GR (PPN γ , $\partial G/\partial t$, deviations from inverse-square law)
 - □ IAU Symp #261: *Relavitivity in Fundamental Astronomy*
 - Frame ties (ecliptic within ICRS)

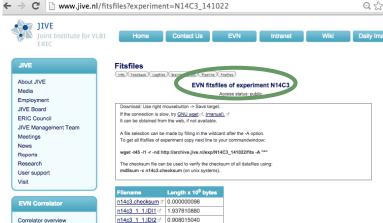
Future

- Digital back-ends / wider IFs / faster sampling
 - Higher total bit-rates (higher sensitivity)
 - More flexible frequency configurations
 - More linear phase response across base-band channels
- Developments in software correlation
 - More special-purpose correlation modes / features
- □ More stations: better sensitivity, *u-v* coverage
 - Additional African VLBI stations for N-5 baselines
- □ Continuing maturation of real-time e-VLBI
 - Better responsiveness (e.g., automatic overrides)
 - Better coordination into multi- λ campaigns


Concepts for the VLBI Tutorial

- □ Review of VLBI- (EVN-) specific quirks
 - |B| so long, no truly point-like primary calibrators
 - Each station has independent maser time/v control; different feeds, IF chains, & back-ends.
- Processing steps
 - Data inspection
 - Amplitude calibration (relying on EVN pipeline...)
 - Delay / rate / phase calibration (fringing)
 - Bandpass calibration
 - Imaging / self-cal
- □ ParselTongue wiki:
 - www.jive.eu/jivewiki/doku.php?id=parseltongue:parseltongue


EVN Archive


e-VLBI

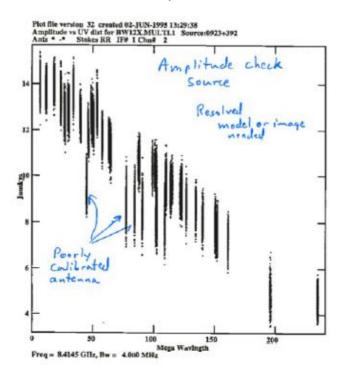
Feedback Logfiles

Plots FITS Pipeline

Pipeline Outputs (downloads)

- Plots up through (rough) images
- Prepared ANTAB file (amplitude calibration input)
- a priori Flagging file(s) (by time-range, by channel)
- AIPS tables
 - CL1 = "unity", typically 15s sampling
 - $SN1 = TY \oplus GC$; $CL2 = CL1 \otimes SN1$ (& parallactic angles)
 - FG1 (sums over all input flagging files)
 - $SN2 = FG1 \oplus CL2 \oplus fring$; $CL3 = CL2 \otimes SN2$
 - BP1 = computed after CL3 ⊕ FG1
- Pipleline-calibrated UVFITS (per source)

Data Familiarization


- □ FITLD to load data
- □ LISTR scan-based summary of observations
- □ PRTAB, PRTAN (TBOUT)
 - Looking into contents of "tables"
- □ POSSM, VPLOT, UVPLT
 - Plots: vs. frequency, vs. time, u-v based
- SNPLT
 - Plot solution/calibration tables (various y-axes)

Amplitude Calibration (I)

- □ VLBI: no truly point-like primary calibrator
 - Structure- and/or time-variability at smallest scales
- Stations measure power levels on/off load
 - \blacksquare Convertible to T_{svs} [K] via calibrated loads
- □ Sensitivities, gain curves measured at station
- \Box SEFD = Tsys(t) / {DPFU * g(z)}
 - $\sqrt{\text{SEFD}_1*\text{SEFD}_2}$ as basis to convert from unitless correlation coefficients to flux densities [Jy]
- □ EVN Pipeline provides JIVE-processed TY table

Amplitude Calibration (II)

- □ UVPLT: plot Amp(|uv|)
 - Calibrators with simple structure: smooth drop-off e.g., $A(\rho) \propto J_1(\pi a \rho)$ for a uniform disk, diameter=a
- Poorly calibrated stations appear discrepant

 Self-calibration iterations can help bring things into alignment

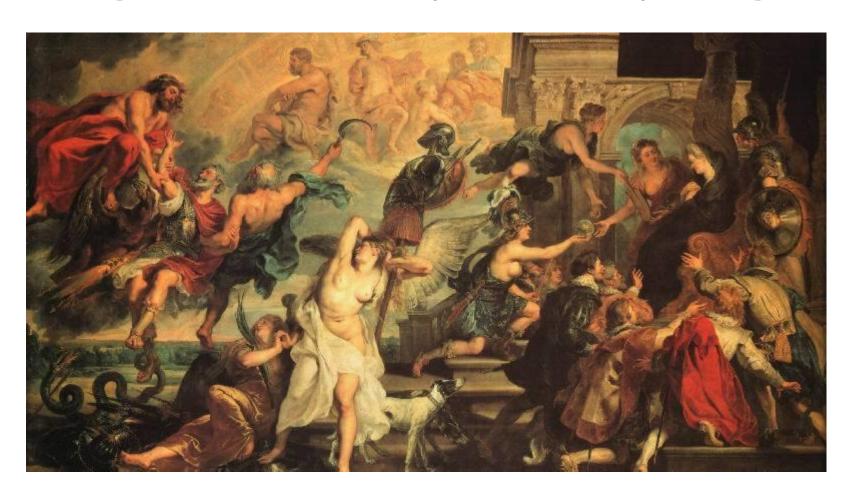
Delay/Rate Calibration

- □ Each antenna has its own "clock" (H-maser)
- □ Each antenna has its own IF-chains, BBCs
 - Differing delays (& rates?) per station/pol/subband
- \Box Delay $\rightarrow \partial \varphi / \partial \omega$ (phase-slope across band)
- \Box Rate $\rightarrow \partial \varphi / \partial t$ (phase-slope vs.time)
- \square Point-source = flat $\varphi(\omega,t)$
 - Regular variations: clocks, source-structure, etc.
 - Irregular variations: propagation, instrumental noise

Fringe-fitting

- Over short intervals (SOLINT), estimate delay and rate at each station (wrt reference sta.)
 - above = "global fringe-fit" (cf. "baseline fringe-fit")
- "Goldilocks" problem for setting SOLINT:
 - too short: low SNR
 - too long: > atmospheric coherence time [= f(w)]
- After fringing, phases should be flat in the individual subbands, and subbands aligned
- BPASS: solve for station bandpass (amp/phase)
 - removes phase-curvature across individual subbands

Animation Removed: 1 of 2



VLBI (EVN) obs:

What you may have thought before ERIS: artifacts from the dim mists of a Jungian collective unconcious?

Animation Removed: 2 of 2

More detailed Monte Carlo simulations reveal an altogether different post-ERIS paradigm:

