Radio Interferometry packages and formats

Anita Richards UK ALMA Regional Centre JBCA, University of Manchester

really???

TP S

DIFNAP GIPSY AIPS++ Astronomical Information Processing System

New-generation array demands

- Dishes and dipole arrays; multiple feeds
 - LOFAR Superterp to Global mm VLBI to SKA precursors
- Calibration
 - Instrumental & atmospheric measurements
 - Astrophysical, band-to-band, bandwidth switching
 - Fringe-fitting for first derivatives of phase (delay, rate)

25-r

- Wide fields direction-dependent calibration
- Wide-field/wide-band imaging
 - Mixed antenna diameters, mosaicing, curved sky
 - Multi-frequency synthesis, mixed spectral modes
 - Narrow channels, short integrations
- Huge raw data volumes
 - Pipelines and parallelisation
 - Automate flagging where possible

New-generation array demands

- Dishes and dipole arrays; multiple feeds
 - LOFAR Superterp to Global mm VLBI to SKA precursors
- Calibration
 - Instrumental & atmospheric measurements
 - Astrophysical, band-to-band, bandwidth switching
 - Fringe-fitting for first derivatives of phase (delay, rate)

VLA pre-PB correction

Bhatnagar

- Wide fields direction-dependent calibration
- Wide-field/wide-band imaging
 - Mixed antenna diameters, mosaicing, durved sky
 - Multi-frequency synthesis, mixed spectral modes
 - Narrow channels, short integrations
- Huge raw data volumes
 - Pipelines and parallelisation
 - Automate flagging where possible

New-generation array demands

- Dishes and dipole arrays; multiple feeds
 - LOFAR Superterp to Global mm VLBI to SKA precursors
- Calibration
 - Instrumental & atmospheric measurements
 - Astrophysical, band-to-band, bandwidth switching
 - Fringe-fitting for first derivatives of phase (delay, rate)

After PB correction

- Wide fields direction-dependent calibration
- Wide-field/wide-band imaging
 - Mixed antenna diameters, mosaicing, curved sky
 - Multi-frequency synthesis, mixed spectral modes
 - Narrow channels, short integrations
- Huge raw data volumes
 - Pipelines and parallelisation
 - Automate flagging where possible

What's in interferometry data?

- Straight from each dish: observatory formats
 - Standardised for VLBI
- Correlated data

- Time series of complex visibilities

- Off-line storage and processing
 - Associate metadata firmly with data
 - Data should be easy to find and transport

Interferometry data

- Observation axes
 - Time, baseline, pointing direction*, frequency
 - \Rightarrow *uvw* coordinates
 - *(strictly, phase centre)
- Measured quantity

- Complex visibility: Amplitude, phase, (weight)
 - per baseline, time interval, spec channel, polarization
- Metadata including
 - Telescope properties
 - Antenna positions, diameters, receivers, subarrays
 - Observational info
 - Fields, intents...
 - Weather, Tsys, flagging information ...

Science Data Model (SDM) format

¹ directory, 196 files

Data formats

- Correlator output usually archived as SDM or FITS
- SDM compact, easy to transport & access metadata
 Slow to access binary data not suitable for analysis
- Convert to FITS or Measurement Set
 - FITS-IDI more usual for storage; UVFITS for processing
 - Venerable, standards diverge (http://fits.gsfc.nasa.gov/)

3C286CPREPOL.SPLAT	 – Unstructured stream
SIMPLE = I/	
BTIPIX = -32 / CT	YPE2 = CUMPLEX /1=real,2=imag,3=weight
NAXIS = 7/	WAL2 = 1.0000000000E+00 /
NAXIS1 =	ELT2 = 1.00000000E+00 /
NAXIS2 = 3/CR	PIX2 = 1.00000000E+00 /
NAXIS3 = 4 / CT	'YPE3 = 'STOKES ' /-1=RR, -2=LL, -3=RL, -4=LR
NAXIS4 = 128 / CT	YPE4 = 'FREQ ' /Frequency in Hz.
NAXIS5 = 4/ CT	YPE5 = 'IF / /Freq. group no. in CH table
NAXIS6 = 1 / CT	YPE6 = 'RA ' /Right Ascension in deg.
NAXIS7 = 1 / CT	YPE7 = 'DEC ' /Declination in deg.
EXTEND = T /This is the antenna file PC	:OUNT = 9/
OBJECT = 'MULTE ' /Source name PT	YPF1 = 'IIISTN'
TELESCOP= 'e-MERLIN' / PS	CALL = 1.90646864812E-10 /
INSTRUME= 'VIBA ' / PT	YPE2 = 'VVSIN'
OBSERVER= '30286 MO' / PS	CPL 2 = 1 90646864812E-10 /
DATE-ORS= '2014-01-12' /Obsistant date VVVV-MM-DD PT	
BSCALE = 1.0000000000E+00 /PEAL = TAPE * BSCALE + BZERD PS	
BZERD = 0.0000000000000000000000000000000000	
$\frac{D}{2} = \frac{1}{10000000000000000000000000000000000$	
FOUTIN = 00000000000000000000000000000000000	The Astronomical
VELKER - 3 (7200 KHU10, 1 LOK 2 HEL 3 UDS PT OPERA - 2 02784500005:02 (Ontering indication DO DT	The subset of the second
DBARH - 2.02/0400000E+02 /Hntenna pointing RH PT	TIPEO - LINITITI
UDSDEC = 3.00091600000E+01 /Hntenna pointing DEC PT	Tres - CUKK-ID Elevible Image Transport Suctor

Measurement Set visibility data

- Directory of Tables
 - MAIN table
 - Binary visibilities
 - Observational properties
 - Metadata
- Similar format for images
- Easy to access
 - Human or software
- http://casa.nrao.edu /Memos/229.html

iupiterallcal.split.	ms	
I ANTENNA		
l I table.dat		
I I table.f0		
l l table info	I OBSERVATION	
l ` table lock	I I table dat	
I DATA DESCRIPTIO	1 1 = + bla = f	I SPECIKHL_WINDOW
l l table dat		I I TADIe,OAT
l l table fû	l ` table lock	table.tv
l l table info	I CADIC, TOCK	
1 = + = + = = 1	1 1 = + 2 = 1 = -1 = -1 = -1 = -1 = -1 = -1 = -	i i table.into
I CADIC, IOCK	table,uat	I table,lock
1 1 = + b = d = +	$1 1^{}$ table for	I SIHIE
$1 1 \text{cable}_{\bullet}$ uac	$1 1^{} \text{Ladie}_{*} \text{TVI}$	I I table.dat
$1 1 \text{cable}_1 = 0$	LaDIC.TI	I I table.+V
Cable. VI table info		I I table.into
		I table,lock
		I table.dat
	I I table.dat	I table.f0
table,uat	I I TADIE, FV	I table.f1
table,fv	I I table, fui	I table.f2
I I table.ful	I I table.into	I table.f2_TSM1
I I table.into	I table,lock	I table.f3
I table,lock	I PRUCESSUR	I table.f3_TSM1
I FLHG_LMD	I I table.dat	I table.f4
I I table.dat	I I table.f0	l table.f5
I I table_f0	table.info	l table.f6
I I table.info	l table.lock	<pre>l table.f6_TSM0</pre>
I table.lock	I SOURCE	I table.f7
I HISTURY	table.dat	<pre>l table.f7_TSM1</pre>
table.dat	table.f0	I table.f8
table.f0	table.f0i	<pre>l table.f8_TSM1</pre>
table.info	∣ l table.info	l table.info
∣ ' table,lock	I ` table.lock	table.lock

> tree jupiterallcal.split.ms

Measurement Set MAIN table

•					🗌 Table	Browser					I [$\exists \times$
<u>F</u> ile	<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>T</u> ools E <u>x</u> port <u>H</u> elp											
3C277.1C.ms												
data		UVW 😽	FLAG	WEIGHT	ANTENNA1	ANTENNA2	EXPOSURE	FIELD_ID	Т	IME	DATA	
ble (53	[-131860, -138051, 85180.9]	[4, 1	[52, 5	1	5	7.99	0	1995-04-15	-17:14:22.00	[4, 1] Complex	=
đ	68	[-131776, -138090, 85247.1]	[4, 1	[52, 5	1	5	7.99	0	1995-04-15	-17:14:39.00	[4, 1] Complex	
ds	83	[-131692, -138129, 85313.3]	[4, 1	[52, 5	1	5	7.99	0	1995-04-15	1.14.38.00	[4.1] Complex	
wor	98	[-131609, -138168, 85379.5]	[4, 1	[52, 5	1	5	7.99	0	1995-04-1	3C277.1C.ms[53, 21] =		
key	113	[-131525, -138207, 85445.6]	[4, 1	[52, 5	1	5	7.99	0	1995-04-1	Complex Array of size [4]		41].
able	128	[-131441, -138246, 85511.7]	[4, 1	[52, 5	1	5	7.99	0	1995-04-1		0	
-	143	[-131357, -138285, 85577.7]	[4, 1	[52, 5	1	5	7.99	0	1995-04-1	0 (-0.16	4379 -26361	3)
rds	158	[.131273 .138323 856/37]	[/ 1	[52 5	1	5	7 99	n	1005-04-1	0 (-0.10	4379,-2.0301	5)
Restore Columns Resize Headers						1 (0.446	854,0.111045	5)				
PAGE NAVIGATION First << [1/211] >> Last 1 Go 2 (-0.0716612,0.223381)						81)						
						3 (-2.49	088,-0.86915	3)				
										=		

- Some of the columns per visibility
 - Data: Complex value for each of 4 correlations (LL RR LR RL) per spectral channel
 - Inspect in CASA browsetable or write to file

Visibility data: Measurement Set format

MAIN	Model, e.g.:	Corrected data	Flags
DATA Original visibilities	FT of image made from MS FT of supplied model image	Copy of visibilities with calibration tables applied	(Edits are stored here first; backup tables can be made and used to
	FT of point flux density	(Used in imaging not calibration)	modify)

- Unix-like directory structure with binary data and ascii metadata files arranged in subdirectories
- Additional tables in MS and free-standing:
 - Admin: Antenna, Source etc.
 - Processing: calibration, flags, etc.

Polarization jargon CIRCULAR LINEAR

Left-hand LHC, L, LL

Right-hand RHC, R, RR Stokes V = (RR-LL)/2

Cross hands LR RL make linear Stokes Q = (RL + LR)/2Stokes U = (RL - LR)/2iPolarized intensity $P = \sqrt{(Q^2 + U^2 + V^2)}$

Polarization angle $\chi = \frac{1}{2} \operatorname{atan2}(U/Q)$

Linear feeds X,XX, Y,YY

Cross hands XY YX make circular

Stokes I = (LL + RR)/2 = (XX + YY)/2beware, some packages' definitions differ in sign or by a factor of 2

Diagrams thanks to Wikipaedia

FITS axes labels

- Axes contain one+ pixels
- Quantization of physical variable e.g.
 - Position in RA
 - Frequency
 - Label
 - Types of polarization \Rightarrow
 - I (one 'pixel')
 - IQUV (four 'pixels')
 - CASA
- Polarizations also termed correlations

Polarization type	Label	FITS code
Total	I	1
Linear	Q	2
Linear	U	3
Circular	V	4
Circular	RR	-1
Circular	LL	-2
Linear	RL	-3
Linear	LR	-4
Linear	XX	-5
Linear	YY	-6
Circular	XY	-7
Circular	ΥX	-8
Undef	UNDEF	
Linear	POLI	5
Linear	POLA	6

Data Reduction Package requirements

- Import data and metadata
- Derive and apply calibration
 - Tables provided with data, may need converting
 - e.g. Tsys
 - User-supplied parameters
 - e.g. antenna position corrections
 - Calibration derived from observed sources
 - Bandpass, phase-reference, self-calibration...
- Display and report data properties
 - Flagging
- Fourier transform and produce images and spectra
 - Clean algorithm, maybe Maximum Entropy
 - Mosaicing, weighting/tapering ...
- Image analysis

Data Reduction Package requirements

- Importing, instrumental calibration Observatory-specific, probably needs particular package Astrophysical calibration and imaging Needs suitable interferometry package Image analysis Can export as FITS and use many types of software Other considerations What do your collaborators use?
 - Speed, ease of installation/maintenance/scripting

CASA developed for ALMA and (J)VLA

- aips++ development in c++ started in ~1994
 - Intended to be to maintain/develop/parallelise
- User-friendly python wrapper since 2007
 - Common Astronomy Software Application
 - Development by NRAO, ESO etc.
 - 'Task' interface or scripting
 - Underlying aips++ toolkit available
 - Basis of LOFAR etc. software
- Measurement Set data format
 - Imports SDM, FITS, old VLA, GMRT and Miriad format
 - Exports SDM, FITS (images or UVFITS)
 - Apply all flags and calibration before inp/exporting
 - Use tar on MS directories for transport

CASA capabilities

- CASA supports all usual off-line data reduction for ALMA, VLA
 - Calibration, imaging, mosaicing, related single-dish
 - Handles mixed bandwidths (line+continuum)
 - Linear or circular polarization
 - Support for (sub-)mm line identification
 - Viewer good for extracting spectra from cubes
 - Limited image analysis and publishable plotting
- Also used for many other interferometers
 - LOFAR, GMRT, e-MERLIN, ATCA, SMA, VLBI
 - May have to start in 'native' package
 - Support for full fringe-fitting under development
 - Accurate primary beam corrections need extension of capabilities to use observatory-supplied beam patterns

Libraries use Measurement Equation

 $\underline{V}_{ij} = \mathbf{M}_{ij}\mathbf{B}_{ij}\mathbf{G}_{ij}\mathbf{D}_{ij}\mathbf{E}_{ij}\mathbf{P}_{ij}\mathbf{T}_{ij}\mathbf{F}_{ij}\mathbf{S}_{v}(l,m)e^{-i2\pi(uijl+vijm)}dldm + \underline{A}_{ij}$

Vectors		Jones Matrices	Hazards		
\underline{V} isibility = $f(u,v)$	Starting point	Multiplicative baseli	ne error		
<u>I</u> mage	Goal	Bandpass response			
Additive baseline	error	Generalised electronic gain			
Scalars	Methods	Dterm (pol. leakage))		
S (mapping I to o	hserver	E (antenna voltage)	pattern)		
polarization)		Parallactic angle			
<i>l,m</i> image plane co	pords	Tropospheric effects			
<i>u,v</i> Fourier plane c <i>i,j</i> telescope pair	oords	Faraday rotation			

Using the Measurement Equation

- Hamaker, Bregman & Sault 1996
 - Decompose into relevant calibration components e.g.
- $\underline{V}_{ij}^{obs} = \mathbf{B}_{ij}\mathbf{G}_{ij}\mathbf{D}_{ij}\mathbf{P}_{ij}\mathbf{T}_{ij}\mathbf{F}_{ij}\underline{V}_{ij}^{ideal}$
 - Chose one (or a few) at a time
 - Usually solve fastest-varying first
 - (so averaging over slower-varying)
 - Compare data with model or idealisation
 - Linearise and solve by χ^2 (or other) minimization
 - (AIPS etc. use similar algorithms for gain calibration)
- Visibility data are stored in Measurement Sets
 - Accessible directories of tables

Starting CASA

- See web links for downloads (or http://casa.nrao.edu)
 – Don't forget the Cookbook!
- Start like <path>/casa-release-4.4.0-el15/casapy
 - You can set up an alias or whatever is convenient
 - Don't reduce data inside the CASA installation!
 - This starts the iPython environment
 - Interactive input to tasks in the xterm
 - Logger (see toolbar for display, export options)
 - Access to shell
 - Direct simple commands e.g. ls
 - Prefix any shell command with ! e.g. !more *py
- Python
 - Case sensitive
 - Zero indexed (e.g. 27 antennas numbered 0~26)
 - Run any scripts or functions you want

Using CASA

- default gaincal resets default values
- help('gaincal') for more details
- Simplest input to tasks is parameter=value
 - In this mode, variables are global
 - solint='1min' will appear in all tasks until reset
 - Check/view parameters with inp gaincal
 - Run task by typing gaincal
 - saveinputs(gaincal,'gctry1.save') saves
 - execfile('gctry1') restores
 - gctry1.save is text file, view using !more gctry1
- For scripting, use:
 - gaincal(vis='super.ms', field='supernova', caltable='super.p1', solint='1min')
 - Now variables are always default unless set

Astronomical Image Processing System

- Originated by NRAO for VLA in 1978
 - Fortran, C
 - Limited built-in scripting/math operations
 - Historically most widely used package for cm-wave
 - VLA, MERLIN, VLBI ... many more interferometers
 - Some support for single dish and any FITS images
 - Very wide functionality from calibration to analysis
- Specialised VLBI calibration and elderly formats
- Many sophisticated image analysis tasks
 - Lovely postscript plots for publication
- Python wrapper (Parseltongue) for easier scripting

AIPS jargon

- Major operations are performed using Tasks
 - **FITLD** loads data, **CALIB** performs calibration etc.
- Input parameters to Tasks are set by Verbs
 - >Task 'CALIB'; CALSOUR 'MKN273'; SOLINT 1
 - Words/names in 'inverted commas'; numbers bare
 - Not case sensitive, in general
 - Inside AIPS, 12-character limit on file/source names
- To set all defaults: >RESTORE 0
 - Beware: will give values typical for VLA data
 - You will have to set parameters suitable for your data
- To exit and kill all AIPS windows: >KLEENEX

Keep sight of the physics

- Brain gets filled with package jargon
 - task 'CALIB'; calsour 'phaseref'; solint 0.5; docal 100; aparm(7) 3; gainuse 5; solmo 'p'
- Rember this means
 - Take the visibility data for the phase ref and apply existing calibration table 5; minimum snr 3
 - If no other model is given, a point source at the field centre will be used
 - Compare the data with the model phase and calculate the corrections needed
- That way you will know to expect
 - and what to check if you get
 - If it looks rubbish, it probably is!

Keep a full processing history

- Use scripts, or
- Note parameter values
 - Examples for further processing
 - Troubleshooting postmortem

An experienced radio astronomer

task 'KETTLE'
source ='tap'
docoffee = 2
sugarprm=[1,0]
domilk = F
nmugs = 2;go