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Objectives

 A more formal approach to radio interferometry using 
coherence functions

 A complementary way of looking at the technique
 Simplifying assumptions

 Relaxing the simple assumptions
 How does a radio interferometer work?

 Follow the signal path
 Technologies for different frequency ranges
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Young's Slit Experiment

d

Angular spacing of fringes = λ/d

Familiar from optics

Essentially the way that 
astronomical interferometers work 
at optical and infrared wavelengths
(e.g. VLTI)

“Direct detection”
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But this is not how radio interferometers 
work in practice ....

 The two techniques are closely related, and it often helps to think 
of images as built up of sinusoidal “fringes”

 But radio interferometers collect radiation (“antenna”), turn it into a 
digital signal (“receiver”) and generate the interference pattern in 
a special-purpose computer (“correlator”)

 How does this work?
 I find it easiest to start with the concept of the mutual coherence 

of the radio signal received from the same object at two different 
places

 No proofs, but I will try to state the simplifying assumptions clearly 
and return to them later.
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The ideal interferometer (1)

 Astrophysical source, location R, generates a time-varying electric 
field E(R,t). EM wave propagates to us at point r.

 In frequency components: E(R,t) = ∫E
ν
(R)exp(2πiνt)dν

      The coefficients E
ν
(R) are complex vectors (amplitude and phase; 

      two polarizations)
 Simplification 1: radiation is monochromatic

E
ν
(r) = ∫∫∫P

ν
(R,r)E

ν
(R) dx dy dz where P

ν
(R,r) is the propagator

 Simplification 2: scalar field (ignore polarization for now)
 Simplification 3: sources are all very far away
 This is equivalent to having all sources at a fixed distance – there 

is no depth information 
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The ideal interferometer (3)

 With these assumptions, Huygens' Principle says
 E

ν
(r) = ∫E

ν
(R){exp[2πi|R-r|/c]/|R-r|} dA  (dA is the element of 

area at distance |R|)
 What we can measure is the correlation of the field at two 

different observing locations. This is

            C
ν
(r

1
,r

2
) = <E

ν
(r

1
)E*

ν
(r

2
)>  where <> is a time average and 

      * means complex conjugation.
 Simplification 5: radiation from astronomical objects is not 

spatially coherent (“random noise”)
 <E

ν
(R

1
)E*

ν
(R

2
)> = 0 unless  R

1 
= R

2
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The ideal interferometer (4)

 Now write s = R/|R| and I
ν
(s) = |R|2<|E

ν
(s)|2> (the observed 

intensity). Using the approximation of large distance to the source 
again:

 C
ν
(r

1
,r

2
) = ∫  I

ν
(s) exp [-2πiνs.(r

1
-r

2
)/c] dΩ

 C
ν
(r

1
,r

2
), the spatial coherence function, depends only on 

separation r
1
-r

2
, so we can keep one point fixed and move the 

other around.
 It is a complex function, with real and imaginary parts, or an 

amplitude and phase.

 No requirement to measure the coherence function in real time if 
you can store the field measurements (VLBI)

An interferometer is a device for measuring the 
spatial coherence function
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u, v, w and direction cosines
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The Fourier Relation
 Simplification 6: receiving elements have no direction dependence
 Simplification 7: all sources are in a small patch of sky
 Simplification 8: we can measure at all values of r

1
-r

2 
 and at all 

times 
 Pick a special coordinate system such that the phase tracking 

centre has s
0
 = (0,0,1)

 C(r
1
,r

2
) = exp(-2πiw)V'

ν
(u,v)

 V'
ν
(u,v) = ∫∫I

ν
(l,m) exp[-2πi(ul+vm)] dl dm

 This is a Fourier transform relation between the modified complex 
visibility V'

ν
 (the spatial coherence function with separations 

expressed in wavelengths) and the intensity I
ν
(l,m)
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Fourier Inversion

 This relation can be inverted to get the intensity distribution, which 
is what we want:

         I
ν
(l,m) = ∫∫V'

ν
(u,v) exp[2πi(ul+vm)] du dv

 This is the fundamental equation of synthesis imaging.
 Interferometrists love to talk about the (u,v) plane. Remember that 

u, v (and w) are measured in wavelengths.
 The vector (u,v,w) = (r

1
-r

2
)/λ  is the baseline
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Simplification 1

 Radiation is monochromatic
 We observe wide bands both for spectroscopy (HI, molecular lines) 

and for sensitive continuum imaging, so we need to get round this 
restriction.

 In fact, we can easily divide the band into multiple spectral channels 
(details later)

 There are imaging restrictions if the individual channels are too wide 
for the field size – see imaging lectures.

 Usable field of view < (Δν/ν
0
)(l2+m

2
)1/2.

 Not usually an issue for modern correlators
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Simplification 2

 Radiation field is a scalar quantity
 The field is actually a vector and we are interested in both 

components (i.e. its polarization).
 This makes no difference to the analysis as long as we measure two 

states of polarization (e.g. right and left circular, or crossed linear) 
and account for the coupling between states.

 Use the measurement equation formalism for this (calibration and 
polarization lectures).
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Polarization

 Want to image Stokes parameters:
 I (total intensity)
 Q, U (linear)
 V (circular)

 Resolve into two (nominally orthogonal) polarization states, either 
right and left circular or crossed linear. 
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Stokes Parameters and Visibilities

 This assumes the perfect case:
 no rotation on the sky (not true for most arrays, but can be 

calculated and corrected)
 perfect system

 Circular basis
 V

I
 = V

RR
 + V

LL

 V
Q
 = V

RL
 + V

LR

 V
U
 = i(V

RL
 - V

LR
)

 V
V
 = V

RR
 – V

LL

 Linear basis
 V

I
 = V

XX
 + V

YY

 V
Q
 = V

XX
 - V

YY

 V
U
 = V

XY
 + V

YX

 V
V
 = i(V

XY
 - V

YX
)

4 coherence functions
V

RR
 = <R

1
R

2
*> and so on
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Simplifications 3 and 4

 Sources are all a long way away
 Strictly speaking, in the far field of the interferometer, so that the 

distance is >D2/λ, where D is the interferometer baseline
 True except in the extreme case of very long baseline observations 

of solar-system objects
 Radiation is not spatially coherent

 Generally true, even if the radiation mechanism is itself coherent 
(masers, pulsars)

 May become detectable in observations with very high spectral and 
spatial resolution

 Coherence can be produced by scattering, since signals form the 
same location in a sources are spatially coherent, but travel by 
different paths through interstellar or interplanetary medium.
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Simplifications 5 and 6

 Space between us and the source is empty
 The receiving elements have no direction-dependence
 Closely related and not true in general. Examples:

 Interstellar or interplanetary scattering
 Tropospheric and (especially) ionospheric fluctuations which lead to 

path/phase and amplitude errors, sometimes seriously direction-
dependent

 Ionospheric Faraday rotation, which changes the plane of 
polarization

 Antennas are usually highly directional by design
 Standard calibration deals with the case that there is no direction-

dependence (i.e each antenna has a single, time-variable 
complex gain)

 Direction dependence is becoming more important, especially for 
low frequencies and wide fields.
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A special case: primary beam correction

 If the response of the antenna is direction-dependent, then we are 
measuring

I
ν
(l,m) D

1ν
(l,m)D*

2ν
(l,m) instead of I

ν
(l,m) (ignore polarization for now)

 An easier case is when the antennas all have the same response

A
ν
(l,m)  = |D

ν
(l,m)|2

 In this case, V'
ν
(u,v) = ∫∫A

ν
(l,m)I

ν
(l,m) exp[-2πi(ul+vm)] dl dm

 We just make the standard Fourier inversion and then divide by 
the primary beam A

ν
(l,m)
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Simplification 7

 The field of view is small
 (or antennas are in a single plane)

 Not always true
 Basic imaging equation becomes:

Vν(u,v,w) = ∫∫I
ν
(l,m) {exp[-2πi(ul+vm+(1-l2-m2)1/2w)]/(1-l2-m2)1/2} dl dm

 No longer a 2D Fourier transform, so analysis becomes more 
complicated (the “w term”)

 Map individual small fields (“facets”) and combine later
 w-projection 
 See imaging lectures
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Simplification 8
 We can measure the coherence function for any spacing and 

time. 
 In fact:

 We have a number of antennas at fixed locations on the Earth (or in 
orbit around it)

 The Earth rotates
 We make many (usually) short integrations over extended periods, 

sometimes in separate observations
 So effectively we sample at discrete u, v (and w) positions.
 Implicitly assume that the source does not vary 

 Often a problem when combining observations take over a long time 
period

 Also assume that each integration (time average to get the 
coherence function) is of infinitesimal duration.
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Simplification 8 (continued)
 In 2D, this measurement process can be described by a sampling 

function S(u,v) which is a delta function where we have taken data 
and zero elsewhere.

 ID

ν
(l,m) = ∫∫ V

ν
(u,v) S(u,v) exp[2πi(ul+vm)] du dv is the dirty 

image, which is the Fourier transform of the sampled visibility 
data.

 ID

ν
(l,m)  = I

ν
(l,m) ⊗ B(l,m), where the ⊗ denotes convolution and 

         B(l,m) = ∫∫  S(u,v) exp[2πi(ul+vm)] du dv is the dirty beam
 The process of getting from ID

ν
(l,m) to I

ν
(l,m) is deconvolution 

(examples in previous lecture).
 However, perhaps better to pose the problem in a different way: 

what model brightness distribution I
ν
(l,m) gives the best fit to the 

measured visibilities and how well is this model constrained?
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Modern imaging algorithms usually work 
more like this

Deconvolution algorithms

CLEAN (represent the sky as a set of delta functions)
Multi-scale clean (represent the sky as a set of Gaussians)
Maximum entropy (maximise a measure of smoothness)
...........
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Reminder: resolution and field size

 Some useful parameters:
 Resolution /rad: ≈λ/d

max

 Maximum observable scale /rad: ≈ λ/d
min

 Primary beam/rad: ≈ λ/D
 Good coverage of the u-v plane (many antennas, Earth rotation) 

allows high-quality imaging.
 Some brightness distributions are in principle undetectable:

 Uniform
 Sinusoid with Fourier transform in an unsampled part of the u-v 

plane.
 Sources with all brightness on scales >λ/d

min 
are resolved out.

 Sources with all brightess on scales < λ/d
max

 look like points,

d = baseline          D = antenna diameter
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Key technologies: following the signal 
path

 Antennas
 Receivers
 Down-conversion
 Measuring the correlations
 Spectral channels
 Calibration
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Antennas collect radiation

 Specification, design and cost are frequency-dependent
 High-frequency: steerable dishes (5 – 100 m diameter)
 Low-frequency: fixed dipoles, yagis, ....
 Ruze formula efficiency =  exp[-(4πσ/λ)2] 
 Surface rms error σ < λ/20
 sub-mm antennas are challenging (surface rms <25 μm for 12m 

ALMA antennas); offset pointing <0.6 arcsec rms 

High frequency (ALMA)                     Low frequency (LOFAR)
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Receivers

 Purpose is to detect radiation
 Cryogenically cooled for low noise (except at very low 

frequencies)
 Normally detect two polarization states

 Separate optically, e.g. using crossed dipoles, wire grid, orthomode 
transducer, ...

 Optionally, in various combinations:
 Amplify RF signal (HEMT)
 Then either: 

 digitize directly (possible up to ~10's GHz) or 
 mix with phase-stable local oscillator signal to make intermediate 

frequency (IF) → two sidebands (one or both used) →  digitize
 a mixer is a device with a non-linear voltage response 

 Digitization typically 3 – 8 bit
 Send to correlator
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Example: SIS mixers for mm wavelengths
SIS = superconductor – insulator - superconductor
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Sidebands

Either separate and keep both sidebands or filter out one.
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Local Oscillator Distribution

 These days, often done over fibre using optical analogue signal 
 Master frequency standard (e.g. H maser)
 Must be phase-stable – round trip measurement
 Slave local oscillators at antennas

 Multiply input frequency
 Change frequency within tuning range
 Apply phase shifts
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Spatial multiplexing

 Focal-plane arrays (multiple receivers in the focal plane of a 
reflector antenna).

 Phased arrays with multiple beams from fixed antenna elements 
(“aperture arrays") e.g. LOFAR

 a phased array is an array of antennas from which the signals are 
combined with appropriate amplitudes and phases to reinforce the 
response in a given direction and suppress it elsewhere

 Hybrid approach: phased array feeds (= phased arrays in the 
focal plane of a dish antenna, e.g. APERTIF). 
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Noise

 RMS noise level S
rms

 T
sys 

is the system temperature, A
eff

 is the effective area of the 

antennas, N
A
 is the number of antennas, Δν is the bandwidth, t

int
 is 

the integration time and k is Boltzmann's constant
 For good sensitivity, you need low T

sys
 (receivers), large A

eff
 (big, 

accurate antennas), large N
A
 (many antennas) and, for 

continuum, large bandwidth Δν.
 Best T

rec
 
 
typically a few x 10K from 1 – 100 GHz, ~100 K at 700 

GHz.  Atmosphere dominates T
sys 

 at high frequencies; 

foregrounds at low frequencies. 
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Delay

 An important quantity in interferometry is the time delay in arrival 
of a wavefront (or signal) at two different locations, or simply the 
delay, τ.

 This directly affects our ability to calculate the coherence function
 Examples:

 Constant (“cable”) delay in waveguide or electronics
 geometrical delay
 propagation delay through the atmosphere

 Aim to calibrate and remove all of these accurately
 Phase varies linearly with frequency for a constant delay

 Δφ = 2πτΔν
 Characteristic signature
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Delay Tracking

The geometrical delay τ
0
 for the delay tracking centre can be calculated accurately 

from antenna position + Earth rotation model.

Works exactly only for the delay tracking centre.  Maximum 
averaging time is  a function of angle from this direction.
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What does a correlator do?

Real

Imaginary

Antenna i

Antenna j

Takes digitized signals from individual antennas; calculates 
complex visibilities for each baseline
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Spectroscopy

 We make multiple channels by correlating with different values of 
lag, τ.  This is a delay introduced into the signal from one antenna 
with respect to another as in the previous slide.  For each quasi-
monochromatic frequency channel, a lag is equivalent to a phase 
shift 2πτν, i.e.

     V(u,v,τ) = ∫V(u,v,ν)exp(2πiτν) dν
 This is another Fourier transform relation with complementary 

variables ν and τ, and can be inverted to extract the desired 
visibility as a function of frequency.

 In practice, we do this digitally, in finite frequency channels:

            V(u,v,jΔν) = Σ
k 
V(u,v, kΔτ) exp(-2πijkΔνΔτ)

 Each spectral channel can then be imaged (and deconvolved) 
individually. The final product is a data cube, regularly gridded in 
two spatial and one spectral coordinate.       
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Correlation in practice

 Correlators are powerful, but special-purpose computers
 ALMA correlator 1.6 x 1016 operations/s

 Implement using FPGA's or on general-purpose computing 
hardware + GPU's, depending on application

 Alternative architectures:
 XF (multiply, then Fourier transform)
 FX (Fourier transform, then multiply)
 Hybrid (digital filter bank + XF)

 Most modern correlators are extremely flexible, allowing many 
combinations of spectral resolution, number of channels and 
bandwidth.
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An example: ALMA spectral setup
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Calibration Overview

 What we want from this step of data processing is a set of perfect 
visibilities V

ν
(u,v,w), on an absolute amplitude scale, measured for 

exactly known baseline vectors (u,v,w), for a set of frequencies, ν, 
in full polarization.

 What we have is the output from a correlator, which contains 
signatures from at least:

 the Earth's atmosphere
 antennas and optical components
 receivers, filters, amplifiers
 digital electronics
 leakage between polarization states

 Basic idea:
 Apply a priori calibrations
 Measure gains for known calibration sources as functions of time 

and frequency; interpolate to target
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A priori calibrations
 Array calibrations (these have to be at least approximately right; 

small errors can be dealt with). For instance:
 Antenna pointing and focus model (absolute or offset)
 Correlator model (antenna locations, Earth orientation and rate, 

clock, ...)
 Instrumental delays
 Model of the geomagnetic field

 Previously measured/derived from simulations/.. and applied post 
hoc

 Antenna gain curve/voltage pattern as function of elevation, 
temperature, frequency, .

 Receiver non-linearity correction, quantization corrections, ...
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Auxiliary Calibrations

 Pre-observation
 Pointing offsets
 Focus
 (approximate) delay

 During observation
 atmosphere + load (mm/sub-mm)
 continuous, switched noise source (cm/m)
 Can also be used to monitor phase difference between polarizations 
 Water-vapour radiometer (atmospheric path, opacity contribution)
 Multifrequency satellite (e.g. GPS) signals (electron content)

 Calibration source models and measurements

Off-line calibrations are covered in the lecture and tutorial.
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The End
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