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Preamble

§ AIM: This lecture aims to give a general introduction to low frequency 
astronomy, focusing on the issues that you must consider and the differences 
with observations with other telescopes. 

§ OUTLINE: 

1. The Low Frequency Array (LOFAR) 

2. Direction dependent effects I. - The beam  

3. Direction dependent effects II. - The atmosphere 

4. Spectral dependence of calibration 
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1. The Low Frequency 
Array
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The Low Frequency Array - Key Facts

§ The International LOFAR Telescope (ILT) is being built in 
the Netherlands, Germany, France, UK, Sweden and 
Poland (~€50M construction + running costs).  

§ Operating frequency is 10 -- 250 MHz. 

§ 1 beam with up to 96 MHz total bandwidth, split into 488 
sub-bands with 256 Channels (8-bit mode). 

§ <488 beams on the sky with ~0.2 MHz bandwidth. 

§ 1700--7 deg2  field-of-view. 

§ Low Band Antenna (LBA; Area ~ 75200 m2;  

Trec ~ 500 K; 10-90 MHz). 

§ High Band Antenna (HBA; Area ~ 57000 m2; 

Trec ~ 160 K; 110-240 MHz). 

§ Correlated with a software correlator in Groningen.
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Low Band Antenna (LBA)
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§ LBA antennas: Cap containing the low noise amplifiers (LNAs), copper wires 
receive two orthogonal linear polarisations (XX and YY), ground plate. 

§ Low cost, high durability (15 year operation), whole sky coverage.

§ The response curve: There is a peak close to the resonance frequency (52 MHz) 
- dipole arms are 1.38 m long.
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High Band Antenna (HBA)
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§ HBA antennas: Each tile consists of 4 x 4 dual linear polarisation aluminium 
dipoles, housed in a polystyrene structure, covered by polypropylene sheets. 

§ Dipoles are combined to form a single “tile beam”.

§ The response curve: There is a smoother response over the main HBA observing 
band.



John McKean - ERIS 2015 - Low Frequency Interferometry

Stations
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§ Three types: Core (24), Remote (14) and International (8 so far). 

§ Different beam shapes 

§ Different sensitivities
} 48/96 LBA dipoles used for Core + Remote stations.

Not to scale!

150 m - 3 km 5 km - 100 km 300 km to 1000 kmBaselines:
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Core stations (24)
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6 station superterp (300 m)
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International Stations (8)

EFFELSBERG

TAUTENBURG
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CHILBOLTON
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§ LOFAR will have an 
unprecedented field-of-view. 

§ Where α depends on the 
tapering used at the station 
level.

FWHM [rad] = ↵
�

D

Field-of-View (FWHM v Freq.)
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FoV = ⇡
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Central cabinets

§ Receiver Control Units (RCU): Input antenna voltages are converted to base-
band frequencies, amplified, filtered and digitised. 

§ Receive signals up to 40 dB - important for removing RFI signals. 

§ Sampling clocks at 200 MHz or 160 MHz (flexible selection of frequency bands). 

§ Remote Station Processing (RSP): Separate the signal into 512 sub-bands of 
156 or 195 kHz width (clock dependent). 

§ Carries out phase-rotation based beam-forming by multiplying with a set of complex 
weights that correspond to the geometrical delay for pointing.
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A Pan-European Array (ILT 46)
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http://www.astron.nl/~heald/lofarStatusMap.html

http://www.astron.nl/~heald/lofarStatusMap.html
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The Dutch Array (LOFAR-NL 38)
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http://www.astron.nl/~heald/lofarStatusMap.html

http://www.astron.nl/~heald/lofarStatusMap.html


John McKean - ERIS 2015 - Low Frequency Interferometry

The Core Array (24)
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http://www.astron.nl/~heald/lofarStatusMap.html

http://www.astron.nl/~heald/lofarStatusMap.html
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UV coverage and angular resolution
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§ Where α depends on the data 
weighting of the visibilities (e.g., 
0.8 for uniform weighting).

FWHM [rad] = ↵
�

D
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LOFAR VLBI imaging of 3C196

17
Olaf Wucknitz

§ LBA image of 3C196 with MERLIN 
408 MHz contours overlaid. 

§ 1.2 arcsec beam

§ HBA image of 3C196 resolves 
the double structure. 

§ 0.35 arcsec beam
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Radio frequency interference

§ Europe is a highly populated area - lots 
of radio frequency interference! 

§ LOFAR mitigates RFI by  

i) having a small time and frequency 
resolution (1s; 763 Hz). 

ii) having 40 dB receiver units to stop 
saturation/spill over to other channels 

iii) having digital filters to remove 
signals at < 30 MHz, 80--110 MHz.
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(Offringa et al. 2012, 2013) 

§ RFI occupancy is low and day / night results are consistent. 

§ LBA: 1.8% 

§ HBA: 3.2%

Radio frequency interference
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2. Direction dependent 
effects. I - The beam

20
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Wide field imaging is fun!

100 square degree 

~10 mJy /beam [2 
arcmin resolution]

Imaging wide-fields is useful for, 
1) Efficient all-sky survey  
2) Looking for rare objects

Wide-fields introduce many issues  for 
a good calibration, 

1) Variable beam power as a 
function of position results in 
a more complicated 
amplitude calibration. 

2) The phase solutions in one 
direction cannot be applied 
to another. 

3) Sky model is more 
complicated (many sources).

LOFAR MSSS SVF; George Heald

~Vij = Jij ~V
IDEAL
ij

An error in your model  
can be absorbed in the 
calibration
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Pointing an aperture array

Parabolic reflector 
(mechanical)

Aperture array 
(electronic)

Reflector + receiver array 
(mechanical + electronic)

Single pixel Aperture Array Phased Array Feed (PAF)

The delay that we add will coherently add the different elements of an aperture 
array in one direction, and suppress the emission from other directions.
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Beam-forming
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§ Unlike standard telescopes, phase arrays have no moving parts. 

§ Pointing is achieved by combining the beams from each individual element (antenna or tile), 
at the station level, using different complex weights. 

§ Combine many stations to form a tied array. 

§ <488 beams can be formed (LOFAR), increasing survey speed, efficiency, calibration.
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Beam-forming
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Example of the LOFAR LBA beam
P

ow
er

 (d
B

) P ~ 1/30

P ~ 1/300
P ~ 1/1000

Michiel Brentjens
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Example of the LOFAR HBA beam
P

ow
er

 (d
B

)

Michiel Brentjens
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Example of LOFAR beam combined

Michiel Brentjens
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What happens with a large beam?

A large beam means that you can survey much larger areas of the sky 
Great for surveys, transients 
Bad if you are not interested in the sky that is off-axis

Galaxy

Cas A + 
Cyg A

Single LBA station image WSRT (25-m dish array) at 150 MHz

Ger de Bruyn
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Bright off-axis sources

Cygnus A and Cas A are about 20000 
Jy at 60 MHz. 

Even far from your target, they can 
dominate the visibility function (side-
lobes at 1/15 to 1/1000). 

Solution, phase shift to the their 
locations, self-calibrate using good 
models and subtract them from the 
target visibility data
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The beam is not constant with time
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The beam is not constant with time
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Correcting for the beam

Variable beams as a function of time mean that the contribution from each source 
will vary over time to the visibilities (must convolve sky model with beam model). 

V⌫(u, v) =

Z Z
A⌫(l,m)I⌫(l,m)e�2⇡i(ul+lm)dldm

Issues: 
1) How well do we know the beam? Recall, the beam is the FT of the 

aperture. What happens if a dipole stops working? 

2) The beam changes as a function of frequency (FWHM ~ λ / D). 
 

~Vij = Jij ~V
IDEAL
ij

An error in your model  
can be absorbed in the 
calibration

More sophisticated calibration that includes the beam (a-projection is being 
implemented in CASA for the JVLA). 
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3. Direction dependent 
effects. II - The 
atmosphere

33
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The ionosphere

The ionosphere is a reflecting (to long wavelengths) 
layer of the atmosphere at ~ 125 km. 

Structure and electron density changes with altitude. 

Effects radio waves through: 
1) Reflection (transparency) 
2) Scintillation (continuum imaging) 
3) Faraday rotation (polarisation)
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The ionosphere

Ger de Bruyn
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Direction dependent calibration

The solution to these issues is to calibrate the gains, not in a single position, but 
over several positions (10s to 100s) across the sky.

~Vij =
X

s

Jij,s~V
IDEAL
ij

Computationally expensive and the robustness is a matter of (current) debate.

Sarod Yattawatta
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Direction dependent calibration

Alternatively, calibrate in one direction at a time and remove the troublesome 
sources (called peeling)

Full-field self-calibration Subtract central sources only, 
leave off-axis source.

Tom Oosterloo
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Direction dependent calibration

Alternatively, calibrate in one direction at a time and remove the troublesome 
sources (called peeling)

Self-Calibrate using model of off-
axis source, apply calibrations 
and image

Apply-corrections to whole dataset 
and remove off-axis source. 
Remove any corrections.

Tom Oosterloo
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Direction dependent calibration

Alternatively, calibrate in one direction at a time and remove the troublesome 
sources (called peeling)

Make new image of the sky 
(without off-axis source).

Use self-calibration, apply 
calibration and make new 
image.

Tom Oosterloo
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Direction dependent calibration

Alternatively, calibrate in one direction at a time and remove the troublesome 
sources (called peeling)

Before. After peeling.

Tom Oosterloo
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Direction dependent calibration

Alternatively, calibrate in one direction at a time and remove the troublesome 
sources (called peeling)

Elizabeth Mahony
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Direction dependent calibration

Alternatively, calibrate in one direction at a time and remove the troublesome 
sources (called peeling)

Wendy Williams
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Direction dependent calibration

Alternatively, calibrate in one direction at a time and remove the troublesome 
sources (called peeling)

Wendy Williams
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4. Spectral dependence 
of calibration

44
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Dealing with large bandwidths

New interferometers have (fractional) large bandwidths. 
Good for sensitivity: σT ~ (Δν)-0.5 
Better for image fidelity: good uv-coverage.

Must know the surface brightness distribution as a function of frequency.
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Multi-Frequency Synthesis (MFS)

U.Rau and T.J.Cornwell: Multi-Scale Multi-Frequency Synthesis Imaging in Radio Interferometry

be modeled and removed before or during multi-frequency
synthesis imaging.

To summarize, just as standard interferometric image re-
construction uses a priori information about the spatial struc-
ture of the sky to estimate the visibility function in unmeasured
regions of the uv-plane, multi-frequency image reconstruction
algorithms need to use a priori information about the spectral
structure of the sky brightness. By combining a suitable model
with the known frequency-dependence of the spatial-frequency
coverage and element response function, it is possible to recon-
struct the broad-band sky brightness distribution from incom-
plete spectral and spatial-frequency sampling.

2. Multi-scale Multi-frequency deconvolution
The MS-MFS algorithm described here is based on the iter-
ative image-reconstruction framework described in Rau et al.
(2009) and summarized in Appendix A. Sections 2.1 to 2.7 for-
mulate the algorithm and summarize its implementation in the
CASA package. Differences between the multi-scale and multi-
frequency parts of MS-MFS with the original MF-CLEAN and
MS-CLEAN approaches are highlighted in sections 3.1 and 3.2.

2.1. Parameterization of spatial structure

An image with multi-scale structure is written as a linear combi-
nation of images at different spatial scales (Cornwell, 2008).

Im =
Ns−1
∑

s=0
Ishps ⋆ I

sky,δ
s (1)

where Im is a multi-scale model image3, and Isky,δs is a collection
of δ-functions that describe the locations and integrated ampli-
tudes of flux components of scale s in the image. Ns is the num-
ber of discrete spatial scales used to represent the image and Ishps
is a tapered truncated parabola of width proportional to s. The
symbol ⋆ denotes convolution.

2.2. Parameterization of spectral structure

The spectrum of each flux component is modeled by a polyno-
mial in frequency ( a Taylor series expansion about ν0 ).

Imν =
Nt−1
∑

t=0
wtνI

sky
t where wtν =

(

ν − ν0
ν0

)t

(2)

where Iskyt represents a multi-scale Taylor coefficient image, and
Nt is the order of the Taylor series expansion.

These Taylor coefficients are interpreted by choosing an
astrophysically appropriate spectral model and performing a
Taylor expansion to derive an expression that each coeffi-
cient maps to. One practical choice is a power law with a
varying index, represented by a second-order polynomial in
log(I) vs log

(

ν
ν0

)

space.

Iskyν = I
sky
ν0

(

ν

ν0

)Iskyα +I
sky
β
log
(

ν
ν0

)

(3)

3 In this paper, superscripts for vectors and matrices indicate type
(model, sky, observed, dirty, residual, etc), and subscripts in italics in-
dicate enumeration indices (t, q for Taylor-term, s, p for spatial scale,
ν for frequency channel.). Non-italic subscripts indicate specific values
of the enumerated indices (for example, Iν0 , I0 or Iα).

Here, Iskyα represents an average spectral-index, and Isky
β
repre-

sents spectral-curvature. The motivation behind this choice of
interpretation is the fact that continuum synchrotron emission is
usually modeled (and observed) as a power law distribution with
frequency. Across the wide frequency ranges that new receivers
are now sensitive to, spectral breaks, steepening and turnovers
need to be factored into models, and the simplest way to include
them and ensure smoothness, is spectral curvature4.

A Taylor expansion of Eqn.3 yields the following expres-
sions for the first three coefficients fromwhich the spectral index
Iskyα and curvature Isky

β
images can be computed algebraically.

Im0 = I
sky
ν0 ; Im1 = I

sky
α I

sky
ν0 ; Im2 =

⎛

⎜

⎜

⎜

⎜

⎝

Iskyα (I
sky
α − 1)
2

+ Isky
β

⎞

⎟

⎟

⎟

⎟

⎠

Iskyν0 (4)

Note that with this choice of parameterization, we are using a
polynomial to model a power-law, and Nt rapidly increases with
bandwidth. A power-series expansion about Iskyα and Isky

β
will

yield a logarithmic expansion (i.e. I vs log ν) which requires
fewer coefficients to represent the same spectrum5.

2.3. Multi-scale multi-frequency model

A wideband model of the sky brightness distribution is con-
structed from Eqns 1 and 2. A wideband flux component is a
spatial basis function (Ishps , Gaussian or parabola) whose inte-
grated amplitude follows a Taylor polynomial in frequency. A
region of emission in which the spectrum varies with position
will be modeled as a sum of these wide-band flux components.
The image-reconstructionprocess simultaneously solves for spa-
tial and spectral coefficients of these flux components.

The image at each frequency can be modeled as a linear com-
bination of Taylor-coefficient images at different spatial scales.

Imν =
Nt
∑

t=0

Ns
∑

s=0
wtν
[

Ishps ⋆ I
sky
s
t

]

where wtν =
(

ν − ν0
ν0

)t

(5)

Here, Ns is the number of discrete spatial scales used to represent
the image and Nt is the order of the series expansion of the spec-
trum. Iskys

t
represents a collection of δ-functions that describe the

locations and integrated amplitudes of flux components of scale
s in the image of the tth series coefficient.

2.4. Measurement equations

The measurement equations6 for a sky brightness distribution
parameterized by Eqn.5 are

4 Wideband imaging algorithms described in Conway et al. (1990)
and Sault & Wieringa (1994) use a fixed spectral index across the band,
and handle slight curvature by performing multiple rounds of imaging
after removing the dominant or average α at each stage. They also sug-
gest using higher order polynomials to handle spectral curvature.
5 Conway et al. (1990) state that the logarithmic expansion has better

convergence properties than the linear expansion when α << 1. An even
more compact representation is a polynomial in log I vs log ν, but it be-
comes numerically unstable to operate on logarithms and exponentials
of pixel amplitudes, especially in the presence of noise.
6 Appendix A contains an explanation of the matrix notation

used here, and briefly describes standard radio-interferometric image-
reconstruction within a least-squares model-fitting framework (mea-
surement equations, normal equations, and iterative χ2 minimization).
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be modeled and removed before or during multi-frequency
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MS-CLEAN approaches are highlighted in sections 3.1 and 3.2.

2.1. Parameterization of spatial structure

An image with multi-scale structure is written as a linear combi-
nation of images at different spatial scales (Cornwell, 2008).

Im =
Ns−1
∑

s=0
Ishps ⋆ I

sky,δ
s (1)

where Im is a multi-scale model image3, and Isky,δs is a collection
of δ-functions that describe the locations and integrated ampli-
tudes of flux components of scale s in the image. Ns is the num-
ber of discrete spatial scales used to represent the image and Ishps
is a tapered truncated parabola of width proportional to s. The
symbol ⋆ denotes convolution.

2.2. Parameterization of spectral structure

The spectrum of each flux component is modeled by a polyno-
mial in frequency ( a Taylor series expansion about ν0 ).

Imν =
Nt−1
∑

t=0
wtνI

sky
t where wtν =

(

ν − ν0
ν0

)t

(2)

where Iskyt represents a multi-scale Taylor coefficient image, and
Nt is the order of the Taylor series expansion.

These Taylor coefficients are interpreted by choosing an
astrophysically appropriate spectral model and performing a
Taylor expansion to derive an expression that each coeffi-
cient maps to. One practical choice is a power law with a
varying index, represented by a second-order polynomial in
log(I) vs log

(

ν
ν0

)

space.

Iskyν = I
sky
ν0

(

ν

ν0

)Iskyα +I
sky
β
log
(

ν
ν0

)

(3)

3 In this paper, superscripts for vectors and matrices indicate type
(model, sky, observed, dirty, residual, etc), and subscripts in italics in-
dicate enumeration indices (t, q for Taylor-term, s, p for spatial scale,
ν for frequency channel.). Non-italic subscripts indicate specific values
of the enumerated indices (for example, Iν0 , I0 or Iα).

Here, Iskyα represents an average spectral-index, and Isky
β
repre-

sents spectral-curvature. The motivation behind this choice of
interpretation is the fact that continuum synchrotron emission is
usually modeled (and observed) as a power law distribution with
frequency. Across the wide frequency ranges that new receivers
are now sensitive to, spectral breaks, steepening and turnovers
need to be factored into models, and the simplest way to include
them and ensure smoothness, is spectral curvature4.

A Taylor expansion of Eqn.3 yields the following expres-
sions for the first three coefficients fromwhich the spectral index
Iskyα and curvature Isky

β
images can be computed algebraically.

Im0 = I
sky
ν0 ; Im1 = I

sky
α I

sky
ν0 ; Im2 =

⎛

⎜

⎜

⎜

⎜

⎝

Iskyα (I
sky
α − 1)
2

+ Isky
β

⎞

⎟

⎟

⎟

⎟

⎠

Iskyν0 (4)

Note that with this choice of parameterization, we are using a
polynomial to model a power-law, and Nt rapidly increases with
bandwidth. A power-series expansion about Iskyα and Isky

β
will

yield a logarithmic expansion (i.e. I vs log ν) which requires
fewer coefficients to represent the same spectrum5.

2.3. Multi-scale multi-frequency model

A wideband model of the sky brightness distribution is con-
structed from Eqns 1 and 2. A wideband flux component is a
spatial basis function (Ishps , Gaussian or parabola) whose inte-
grated amplitude follows a Taylor polynomial in frequency. A
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where Iskyt represents a multi-scale Taylor coefficient image, and
Nt is the order of the Taylor series expansion.

These Taylor coefficients are interpreted by choosing an
astrophysically appropriate spectral model and performing a
Taylor expansion to derive an expression that each coeffi-
cient maps to. One practical choice is a power law with a
varying index, represented by a second-order polynomial in
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ν for frequency channel.). Non-italic subscripts indicate specific values
of the enumerated indices (for example, Iν0 , I0 or Iα).

Here, Iskyα represents an average spectral-index, and Isky
β
repre-

sents spectral-curvature. The motivation behind this choice of
interpretation is the fact that continuum synchrotron emission is
usually modeled (and observed) as a power law distribution with
frequency. Across the wide frequency ranges that new receivers
are now sensitive to, spectral breaks, steepening and turnovers
need to be factored into models, and the simplest way to include
them and ensure smoothness, is spectral curvature4.

A Taylor expansion of Eqn.3 yields the following expres-
sions for the first three coefficients fromwhich the spectral index
Iskyα and curvature Isky

β
images can be computed algebraically.

Im0 = I
sky
ν0 ; Im1 = I

sky
α I

sky
ν0 ; Im2 =

⎛

⎜

⎜

⎜

⎜

⎝

Iskyα (I
sky
α − 1)
2

+ Isky
β

⎞

⎟

⎟

⎟

⎟

⎠

Iskyν0 (4)

Note that with this choice of parameterization, we are using a
polynomial to model a power-law, and Nt rapidly increases with
bandwidth. A power-series expansion about Iskyα and Isky

β
will

yield a logarithmic expansion (i.e. I vs log ν) which requires
fewer coefficients to represent the same spectrum5.

2.3. Multi-scale multi-frequency model

A wideband model of the sky brightness distribution is con-
structed from Eqns 1 and 2. A wideband flux component is a
spatial basis function (Ishps , Gaussian or parabola) whose inte-
grated amplitude follows a Taylor polynomial in frequency. A
region of emission in which the spectrum varies with position
will be modeled as a sum of these wide-band flux components.
The image-reconstructionprocess simultaneously solves for spa-
tial and spectral coefficients of these flux components.

The image at each frequency can be modeled as a linear com-
bination of Taylor-coefficient images at different spatial scales.

Imν =
Nt
∑

t=0

Ns
∑

s=0
wtν
[

Ishps ⋆ I
sky
s
t

]

where wtν =
(

ν − ν0
ν0

)t

(5)

Here, Ns is the number of discrete spatial scales used to represent
the image and Nt is the order of the series expansion of the spec-
trum. Iskys

t
represents a collection of δ-functions that describe the

locations and integrated amplitudes of flux components of scale
s in the image of the tth series coefficient.

2.4. Measurement equations

The measurement equations6 for a sky brightness distribution
parameterized by Eqn.5 are

4 Wideband imaging algorithms described in Conway et al. (1990)
and Sault & Wieringa (1994) use a fixed spectral index across the band,
and handle slight curvature by performing multiple rounds of imaging
after removing the dominant or average α at each stage. They also sug-
gest using higher order polynomials to handle spectral curvature.
5 Conway et al. (1990) state that the logarithmic expansion has better

convergence properties than the linear expansion when α << 1. An even
more compact representation is a polynomial in log I vs log ν, but it be-
comes numerically unstable to operate on logarithms and exponentials
of pixel amplitudes, especially in the presence of noise.
6 Appendix A contains an explanation of the matrix notation

used here, and briefly describes standard radio-interferometric image-
reconstruction within a least-squares model-fitting framework (mea-
surement equations, normal equations, and iterative χ2 minimization).

3

Parameterise:

Build Ι(ν) model:

Sky images:

We can represent the sky in emission interms of a Taylor expansion about some 
reference frequency (see Rau & Cornwell 2011).

A power-law model is used to describe the spectral dependence of the sky 
emission.
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Imaging example: Cygnus A

LOFAR imaging at 109 to 183 MHz for 8 h on source.
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Summary

1. The Low Frequency Array will transform our view of the low frequency 
Universe (with a frequency coverage and resolution that surpasses even the 
SKA, as proposed). 

2. Direction dependent effects will limit the quality of wide-field imaging due to 
time variable beam patterns, time variable ionosphere and our limited 
knowledge of the sky model. 

3. New advanced calibration techniques are being tested and already show 
promise in reaching the thermal noise in the images, but careful study of the 
effects of direction dependent calibration need to be better understood. 

4. Spectral variation in the sky model must also be taken into account due to 
the large bandwidths of the new telescope systems.


