Basic Imaging and Self-Calibration (T4 + T7)

John McKean

0.6

500.000

1e+06

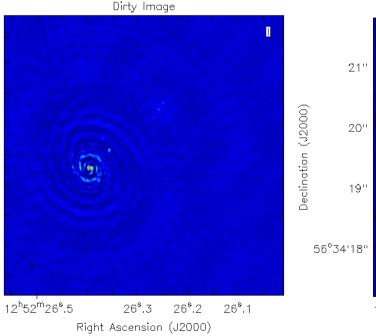
1.5e+06

20+06 UVwave (λ)

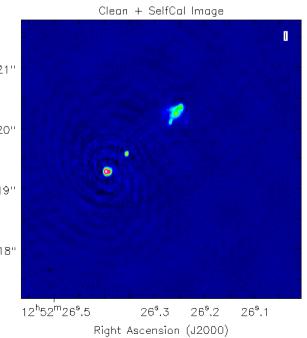
Amp vs. UVwave

- Amp vs. UVwave

21"


20''

19''


56°34'18"

Declination (J2000)

Fourier Transform

Deconvolution

AIM:

- 1. To make an image by taking the fast Fourier transform of the visibility data.
- 2. Carry out deconvolution using the CLEAN algorithm with CASA.
- 3. Use the new model obtained for the sky brightness distribution to carry out self-calibration.

During this process, we will make a ScriptForImaging.py file that can be used within CASA to make images automatically.

In the following "> command" is used to show inputs to the terminal and # comment # is used to explain where possible what is going on.

We will use the e-MERLIN data set on J1252+5634 that was edited and calibrated during the earlier tutorials (T2 and T3).

If you had problems during T3, download the calibrated dataset from,

http://almanas.jb.man.ac.uk/amsr/3C277p1/1252+5634.ms.tar

STEP 1 - Set-up the script

We will add our commands to a new ScriptForImaging.py, This script allows us to re-do what we have done, or parts of the process, automatically (useful for checking mistakes). Download the template from,

http://www.astron.nl/~mckean/ScriptForImaging.py

We can edit this file using your favourite text editor, e.g. emacs, pico, etc.

> pico ScriptForImaging.py

We will edit the script as we go.

```
ScriptForImaging - Edited
•
盟
           ScriptForImaging.py > No Selection
    # e-MERLIN imaging script for J1252+5634 (4 spws x 64 channels) in CASA 4.4.0
 2
 3
    #Calibration steps
    thesteps = [0]
 4
    step_title = {0: 'Title of step 0 (casa task)'
 5
                                                                    - Here we enter our steps
                 1: 'Title of step 1 (casa task)'}
 6
 7
 8 try:
      print 'List of steps to be executed ...', mysteps
 9
 10
      thesteps = mysteps
11
    except:
12
      print 'global variable mysteps not set.'
    if (thesteps==[]):
13
14
      thesteps = range(0,len(step title))
      print 'Executing all steps: ', thesteps
15
16
17
18
    # The Python variable 'mysteps' will control which steps
19 # are executed when you start the script using
20 # execfile('scriptForCalibration.py')
 21 # e.g. setting
 22 # mysteps = [2,3,4]# before starting the script will make the script execute
 23 # only steps 2, 3, and 4
 24 # Setting mysteps = [] will make it execute all steps.
25
26
    print 'Write the value for variables -> run the script from the beginning'
27
    #definitions
                                                                                    Here we enter our variables
28
    msfile = '1252+5634.ms' #ms multisource file
 29
    myspw = \sqrt[0-3] #spw of interest, use myspw = 3 is your computer is slow
30
31
32 # description of step
    mystep = 0
33
34
    if(mystep in thesteps):
      casalog.post('Step '+str(mystep)+' '+step_title[mystep],'INFO')
35
 36
      print 'Step ', mystep, step_title[mystep]
37
                                                                    Here we will enter our commands
 38
    # description of step
 39
 40
    mystep = 1
 41
    if(mystep in thesteps):
      casalog.post('Step '+str(mystep)+' '+step_title[mystep],'INFO')
 42
      print 'Step ', mystep, step_title[mystep]
 43
 44
 45
                                                                    Here we will enter our commands
```

To start CASA,

To run the script,

> casapy # start CASA

You should see the following in your terminal

The start-up time of depending on whether are cached or not. =========	°CASA may vary • the shared libraries ====================================
CASA Version 4.4.0-R Compiled on: Fri 2	EL (r33623) 015/06/12 20:55:45 UTC
tasklist taskhelp help taskname toolhelp	e following commands: - Task list organized by category - One line summary of available tasks - Full help for task - One line summary of available tools ername - Full help for parameter name
Filename : ipy Mode : bac Output logging : Fal Raw input log : Fal Timestamping : Fal State : act *** Loading ATNF ASA	se se se ive
CASA < 2>: 🛛	

> mysteps = [0, 1] # this will run steps 0 and 1 # > execfile('ScriptForImaging.py') # this run the script#

Nothing will happen because we have no commands yet, but msfile and myspw alias have been set.

STEP 2 - Determine our imaging field-of-view and pixel size

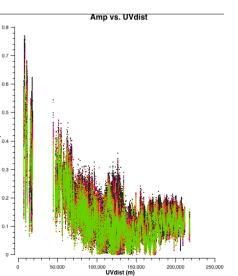
We will make an image by taking the fast Fourier transform (FFT) of the visibility data. This will involve projecting the sky surface brightness distribution onto a regular grid of pixels. We have some choices to make,

- 1. What is the size of the image that we would like to make?
- 2. How large should the pixels be?

Image size: The visibilities contain information from all of the sources in the field-of-view. Technically we should make an image that is equal to this field-of-view. Our array is 6 antennas that are 25 m in size.

What is the field of view or a 25 m telescope at ~5 GHz?

```
> 3600 * (180 / pi) * (3e8 / 5.265e9) / 25 # arcsec * (rad->deg) * (c / v) / D #
Out: 470.11921651759855 # Full width half max in arcsec #
```


This should be the field-of-view that we image, but we will use ~5 arcsec for speed.

Pixel Size: We need to Nyqvist sample the data when we projected it onto a regular grid so that we do not lose information. We can estimate pixel-size by considering the longest baseline in our data set using plotms and plotting AMP versus UVDIST (colourise SPW, corr='RR, LL', argchannel = '64').

We see that the longest baseline is at ~220 km. So we can estimate the synthesised beam with,

```
> 3600 * (180 / pi) * (3e8 / 5.265e9) / 220e3
Out: 0.05347342021615011  # max resolution in arcsec #
```

This is approximately what we would expect, so we take 10.7 mas pixels for safety (1/5 sampling).

STEP 3 - Make an image

We will start by making our first image, which will be the FFT of the visibility data. All deconvolution is carried out in CASA using the CLEAN task.

> help clean

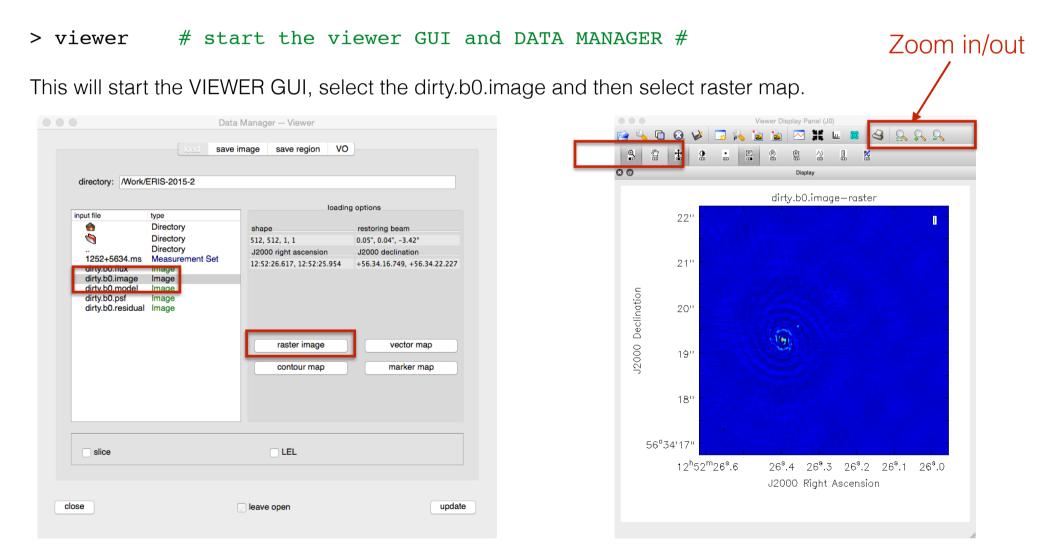
This will give you a full summary of the task and suggested input parameters. Many of them we will not use here for this tutorial.

Start by replacing all of the parameters back to their defaults

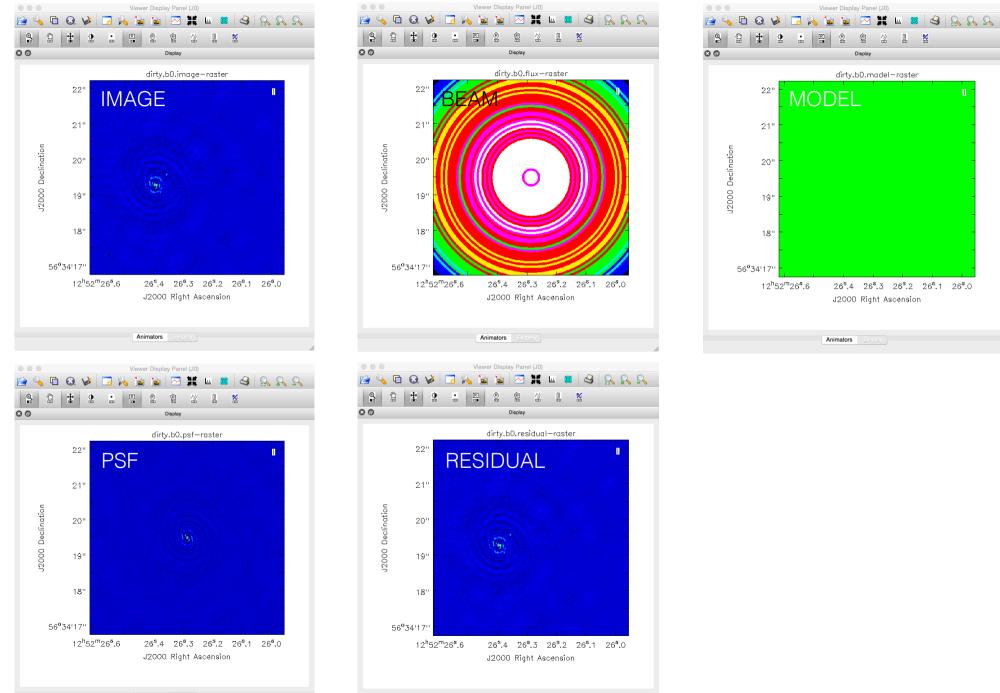
```
> default clean
```

```
> vis = msfile  # Name of the visibility MS file #
                 # spectral windows that we will use #
> spw = myspw
> cell = "0.0107arcsec" # pixel-size we will use #
> imsize = 512
                 # image size we will use (~5 arcsec) #
> weighting = "briggs"  # set visibility weighting #
            # set robust parameter (balance between nat/uni) #
> robust = 0
                       # we will do no convolution #
> niter = 0
> imagename = "dirty.b0" # call your image something #
                       # check your inputs (nothin should be red) #
> inp
                       # run the task #
> qo clean
```

Look at your logger window to view the progress of CLEAN.


		Log Messages (:/Work/ERIS-2015/casapy-20150905-201046.log)	
	XD	Search Message: Time C	
Time Priority	Origin	Message	
INFO	clean::::+	##### Begin Task: clean #####	
TNEO	aleen	$d \log n/n i d = 1252 \pm 5634$ mg [*] imagenerge="dirty b0" outlierfile="" field="" $d m = 0.2$ "	

	clean::::+	##### Begin Task: Clean #####	
INFO	clean::::	clean(vis="1252+5634.ms",imagename="dirty.b0",outlierfile="",field="",spw="0~3",	- A Contract of the second
INFO	clean::::+	<pre>selectdata=True,timerange="",uvrange="",antenna="",scan="",</pre>	Here are our input
INFO	clean::::+	observation="",intent="",mode="mfs",resmooth=False,gridmode="",	
INFO	clean::::+	wprojplanes=-1,facets=1,cfcache="cfcache.dir",rotpainc=5.0,painc=360.0,	
INFO	clean::::+	aterm=True, psterm=False, mterm=True, wbawp=False, conjbeams=True,	parameters
INFO	clean::::+	epjtable="",interpolation="linear",niter=0,gain=0.1,threshold="0.0mJy",	parameters
INFO	clean::::+	psfmode="clark", imagermode="csclean", ftmachine="mosaic", mosweight=False, scaletype="SAULT",	
INFO	clean::::+	<pre>multiscale=[],negcomponent=-1,smallscalebias=0.6,interactive=False,mask=[],</pre>	
INFO	clean::::+	<pre>nchan=-1,start=0,width=1,outframe="",veltype="radio",</pre>	
INFO	clean::::+	<pre>imsize=512,cell="0.0107arcsec",phasecenter="",restfreq="",stokes="I",</pre>	
INFO	clean::::+	weighting="briggs", robust=0, uvtaper=False, outertaper=[''], innertaper=['1.0'],	
INFO	clean::::+	modelimage="", restoringbeam=[''], pbcor=False, minpb=0.2, usescratch=False,	
INFO	clean::::+	<pre>noise="1.0Jy", npixels=0, npercycle=100, cyclefactor=1.5, cyclespeedup=-1,</pre>	
INFO	clean::::+	nterms=1,reffreq="",chaniter=False,flatnoise=True,allowchunk=False)	
INFO	clean::::	nchan=-1 start=0 width=1	
INFO	clean::::	Use default channelization for clean	
INFO	clean::::	clean image: dirty.b0	
INFO	clean::::	FTMachine used is ft	
INFO	aOnThisMS()	Performing selection on MeasurementSet : /Work/ERIS-2015-2/1252+5634.ms	
INFO	aOnThisMS()	Selecting on fields : 0	
INFO	aOnThisMS()	Selecting on spectral windows expression :0~3	
INFO	aOnThisMS()	Selected all 254264 rows	
INFO	aOnThisMS()	Selected : [64 chans in spw 0] [64 chans in spw 1] [64 chans in spw 2] [64 chans in spw 3]	
INFO	fineimage()	Defining image properties:nx=512 ny=512 cellx='0.0107arcsec' celly='0.0107arcsec' stokes=I' mode=MFS	nchan=-1 start=0 step=1 spwids=[0, 1, 2, 3] fieldid=-1 fact
INFO	fineimage()	phaseCenter='12:52:26.29, 56.34.19.49, 'mStart='Radialvelocity: 0' qStep='0 ''mFreqStart='Freque	
INFO	r::setvp()	Setting voltage pattern parameters	
INFO	r::setvp()	Sky position tolerance is 180 degrees	
INFO	r::setvp()	Using system default voltage patterns for each telescope	MADNI: No primory boom
INFO	akeimage()	Calculating image (without full skyequation)	WARN: No primary beam
WARN	line 2970)	The MS has multiple antenna diametersPB could be wrong	
INFO	r::setvp()	Setting voltage pattern parameters	model
INFO	r::weight()	Weighting MS: Imaging weights will be changed	nodel
INFO	r::weight()	Briggs weighting: sidelobes will be suppressed over full image	
INFO	ngWeight()	Normal robustness, robust = 0	
INFO	clean::::	Used mask(s) : ['1] to create mask image(s) : dirty.b0.mask	
INFO	toptions()	Setting processing options	
INFO	clean::::	No model found. Making empty initial model : dirty.b0.model	
INFO	rdinates()	No model frequency = 5.07209 GHz, synthesized continuum bandwidth = 0.512013 GHz	
INFO	er::clean()	Center Frequency = 5.07209 GHZ, synthesized Continuum Bandwidth = 0.512013 GHZ	
INFO	TMachine()	Multiple fields or facets: transforms will be padded by a factor 1.2	
INFO	TMachine()	Multiple fields of facets: transforms will be padded by a factor 1.2	
INFO	er::clean()	Clean gain = 0.1, Niter = 0, Threshold = 0 mJy	
INFO	er::clean()	Starting deconvolution	
INFO	eApproxPSFs	bmaj: 0.0504933", bmin: 0.0375555", bpa: -3.42072 deq	
INFO	eApproxPSFs odel::solve	Final maximum residual = 0.115846	
INFO	odel::solve		Entimated aunthoniand
INFO		Model 0: max, min residuals = 0.115846, -0.0292736 clean flux 0 Threshhold not reached yet.	Estimated synthesised
	er::clean()	······································	· · · · · · · · · · · · · · · · · · ·
INFO	er::clean()	Fitted beam used in restoration: 0.0504933 by 0.0375555 (arcsec) at pa -3.42072 (deg)	beam size
71170	r::iClean()	Restoring Image(s) with the clean-beam ######End Task: clean #####	
INFO			
INFO INFO INFO	clean:::: clean::::+		


Lets look at the output. We have generated 5 images that are all on the same grid

dirty.b0.image# The 'deconvolved' image #dirty.b0.psf# The image of the point spread function (FFT of the uv-sampling function) #dirty.b0.model# The image containing your model components (delta functions, truncated Gaussians) #dirty.b0.residual# The image made by subtracting the model from the visibility of doing an FFT #dirty.b0.flux# An image of the expected primary beam response #

We can look at each of these images using the CASA VIEWER (run interactively or from the command line).

Lets look at each of the output images (either start a new VIEWER or add multiple images to the same VIEWER and use the ANIMATOR option - top menu -> VIEW -> ANIMATOR).

Animators Displa

Animators Displa

All that seemed to work well, so lets add the parameters of our CLEAN run to our script. Every time we run a task in CASA we generate a, for example clean.last file

> !more clean.last

and copy the final part to our script, and if we wanted, do what we just did using our script,

```
> mysteps = [0] # this will run step 0 #
> execfile('ScriptForImaging.py')
                                                                                   # this run the script#
                        •
                                                                    ScriptForImaging - Edited
                                ScriptForImaging.py > No Selection
                             # e-MERLIN imaging script for J1252+5634 (4 spws x 64 channels) in CASA 4.4.0
                             #Calibration steps
                             thesteps = [0]
                             step_title = {0: 'Make dirty image (clean)
                                                                                                    Update our steps
                                          1: 'Make clean image (clean)
                          8 try:
                          9
                              print 'List of steps to be executed ...', mysteps
                         10
                              thesteps = mysteps
                         11 except:
                              print 'global variable mysteps not set.'
                         12
                         13 if (thesteps==[]):
                         14
                               thesteps = range(0,len(step_title))
                         15
                               print 'Executing all steps: ', thesteps
                         16
                         17
                         18 # The Python variable 'mysteps' will control which steps
                         19 # are executed when you start the script using
                         20 # execfile('scriptForCalibration.py')
                         21 # e.g. setting
                         22 # mysteps = [2,3,4]# before starting the script will make the script execute
                         23 # only steps 2, 3, and 4
                         24 # Setting mysteps = [] will make it execute all steps.
                         25
                         26
                             print 'Write the value for variables -> run the script from the beginning
                                                                                                              copy clean parameters
                         27
                             #definitions
                         28
                         29 msfile = '1252+5634.ms' #ms multisource file
                                                                                                                   here (remember to
                            myspw = '0 \sim 3' # spw of interest, use myspw = '3' if your computer is slow
                         30
                         31
                         32 # description of step
                                                                                                                              indent)
                         33 mystep = 0
                         34 if(mystep in thesteps):
                               casalog.post('Step '+str(mystep)+' '+step_title[mystep],'INFO')
                         35
                               print 'Step ', mystep, step_title[mystep]
                         36
                         37
                              clean(vis="1252+5634.ms", imagename="dirty.b0", outlierfile="", field="", spw="0~3", selectdata=True, timerange="",
                         38
                                  uvrange="",antenna="",scan="",observation="",intent="",mode="mfs",resmooth=False,gridmode="",wprojplanes=-1
                                   , facets=1, cfcache="cfcache.dir", rotpainc=5.0, painc=360.0, aterm=True, psterm=False, mterm=True, wbawp=False,
                                  conjbeams=True,epjtable="",interpolation="linear",niter=0,gain=0.1,threshold="0.0mJy",psfmode="clark",
                                  imagermode="csclean",ftmachine="mosaic",mosweight=False,scaletype="SAULT",multiscale=[],negcomponent=-1,
                                  smallscalebias=0.6, interactive=False, mask=[], nchan=-1, start=0, width=1, outframe="", veltype="radio", imsize=
                                  512, cell="0.0107arcsec", phasecenter="", restfreq="", stokes="I", weighting="briggs", robust=0, uvtaper=False,
                                  outertaper=[''],innertaper=['1.0'],modelimage="",restoringbeam=[''],pbcor=False,minpb=0.2,usescratch=False,
                                  noise="1.0Jy",npixels=0,npercycle=100,cyclefactor=1.5,cyclespeedup=-1,nterms=1,reffreq="",chaniter=False,
                                  flatnoise=True,allowchunk=False)
                         39
                         40
                         41
                             # description of step
```

STEP 4 - What about image weights

So far we have only used robust = 0, but lets try the case of natural and uniform weights (robust = 2 and = -2).

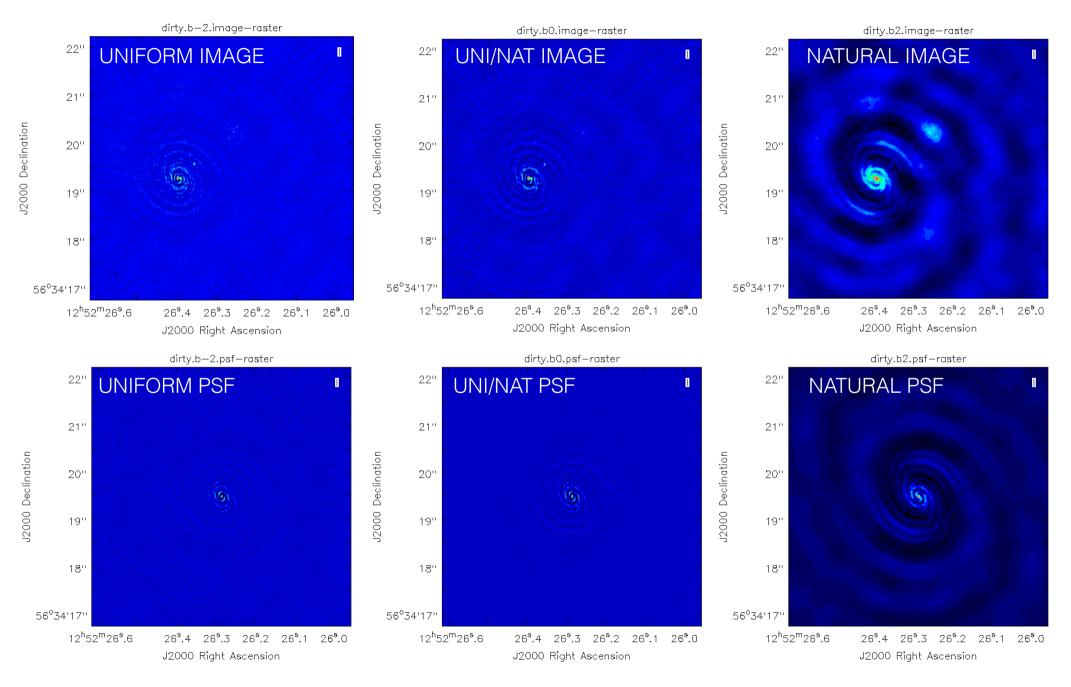
> tget clean	<pre># recover the last set of parameters used #</pre>
> robust = 2	<pre># set robust parameter to 2 (natural weighting) #</pre>
<pre>> imagename = "dirty.b2"</pre>	<pre># set new image name to make new file #</pre>
> go clean	# start FFT #

And once that is completed, we can add the clean.last command to our script. The run with robust = -2

```
> tget clean  # recover the last set of parameters used #
> robust = -2  # set robust parameter to -2 (uniform weighting) #
> imagename = "dirty.b-2" # set new image name to make new file #
> go clean  # start FFT #
```

Note the synthesised beam sizes that are estimated by CASA for the different weights.

Next lets look at the dirty images and psf images using the VIEWER.


器 < > CriptForImaging.py > No Selection

```
62
           \pi only steps 2, 3, and \pi
           # Setting mysteps = [] will make it execute all steps.
   24
   25
   26
           print 'Write the value for variables -> run the script from the beginning'
   27
           #definitions
   28
   29
           msfile = '1252+5634.ms' #ms multisource file
           myspw = '0 \sim 3' #spw of interest, use myspw = '3' if your computer is slow
   30
   31
   32
          # description of step
   33
           mystep = 0
   34 if(mystep in thesteps):
   35
               casalog.post('Step '+str(mystep)+' '+step_title[mystep],'INFO')
               print 'Step ', mystep, step title[mystep]
   36
   37
   38
               clean(vis="1252+5634.ms", imagename="dirty.b0", out ierfile="", field="", spw="0~3", selectdata=True, timerange="",
                       uvrange="",antenna="",sean="",observation="",ntent="",mode="mfs",resmooth=False,gridmode="",wprojplanes=-1
                       , facets=1, cfcache="cfcache.dir", rotpainc=5.0, painc=360.0, aterm=True, psterm=False, mterm=True, wbawp=False,
                       conjbeams=True,epitable="",interpolation="linear",niter=0,gain=0.1,threshold="0.0mJy",psfmode="clark",
                       imagermode="csclean",ftmachine="mosaic",mosweight=False,scaletype="SAULT",multiscale=[],negcomponent=-1,
                       smallscalebias=0.6, interactive=False, mask=[], nchan=-1, start=0, width=1, outframe=""", veltype="radio", imsize="""", veltype="radio", imsize="""", veltype="radio", imsize=""", veltype="radio", imsize="", veltype="radio", imsize=""", veltype=""", veltype="",

                       512, cell="0.0107arcsec", phasecenter="", restfreq="", stokes="I", weighting="briggs", robust=0, vtaper=False,
                      outertaper=[''],innertaper=['1.0'],modelimage="",restoringbeam=[''],pbcor=False,minpb=0.2,usescratch=False,
                       noise="1.0Jy",npixels=0,npercycle=100,cyclefactor=1.5,cyclespeedup=-1,nterms=1,reffreq="",chaniter=False,
                       flatnoise=True,allowchunk=False)
   39
               clean(vis="1252+5634.ms", imagename="dirty.b2", outlierfile="", field="", spw="0~3", selectdata=True, timerange="",
   40
                       uvrange="",antenna="",scan="",observation="",Intent="",mode="mfs",resmooth=False,gridmode="",wprojplanes=-1
                        ,facets=1,cfcache=<mark>"cfcache.dir</mark>",rotpainc=5.0,painc=360.0,aterm=True,psterm=False,mterm=True,wbawp=False,
                       conjbeams=True,epjtable="",interpolation="linear",niter=0,gain=0.1,threshold="0.0mJy",psfmode="clark",
                       imagermode="csclean",ftmachine="mosaic",mosweight=False,scaletype="SAULT",multiscale=[],negcomponent=-1,
                       smallscalebias=0.6, interactive=False, mask=[], nchan=-1, start=0, width=1, outframe=""", veluppe="radio", imsize="""", veluppe="radio", imsize="""", veluppe="radio", imsize=""", veluppe="radio", imsize="", veluppe="radio", imsize=""", veluppe="radio", imsize=""", veluppe="radio", imsize=""", veluppe=""", veluppe="", veluppe="", veluppe="", veluppe=""", veluppe="", veluppe="", veluppe=""", veluppe=""", veluppe=""", veluppe="", veluppe="", veluppe=""", veluppe="", veluppe=""", veluppe
                      512, cell="0.0107arcsec", phasecenter="", restfreq="", stokes="I", weighting="briggs", robust=2, uvtaper=False,
                       outertaper=[''],innertaper=['1.0'],modelimage="",restoringbeam=[''],pbcor=False,minpb=0.2,dsescratch=False,
                       noise="1.0Jy",npixels=0,npercycle=100,cyclefactor=1.5,cyclespeedup=-1,nterms=1,reffreq="",chaniter=False,
                       flatnoise=True,allowchunk=False)
   41
   42
               clean(vis="1252+5634.ms', imagename="dirty.b-2", outlierfile="", field="", spw="0~3", selectdata=True, timerange="",
                       uvrange="",antenna="",sean="",observation="",Intent="",mode="mfs",resmooth=False,gridmode="",wprojplanes=-1
                        ,facets=1,cfcache="cfcache.dir",rotpainc=5.0,painc=360.0,aterm=True,psterm=False,mterm=True,wbawp=False,
                       conjbeams=True,epitable="",interpolation="linear",niter=0,gain=0.1,threshold="0.0mJy",psfmode="clark",
                       imagermode="csclean",ftmachine="mosaic",mosweight=False,scaletype="SAULT",multiscale=[],negcomponent=-1,
                       smallscalebias=0.6, interactive=False, mask=[], nchan=-1, start=0, width=1, outframe='_', vettype=''adio'', imsize=
                       512, cell="0.0107arcsec", phasecenter="", restfreq="", stokes="I", weighting="briggs', robust=-2, vtaper=False,
                       outertaper=[''],innertaper=['1.0'],modelimage="",restoringbeam=[''],pbcor=False,minpb=0.2,usecratch=False,
                       noise="1.0Jy",npixels=0,npercycle=100,cyclefactor=1.5,cyclespeedup=-1,nterms=1,reffreq="",chaniter=False,
                       flatnoise=True,allowchunk=False)
   43
   44
   45
           # description of step
   46
           mystep = 1
   47
           if(mystep in thesteps):
   48
               casalog.post('Step '+str(mystep)+' '+step_title[mystep],'INFO')
   49
               print 'Step ', mystep, step_title[mystep]
   50
   51
```

TIP: It is useful to first make a dirty image to see if you choice of pixel size (cell) and image size (imsize) is appropriate given your target observation.

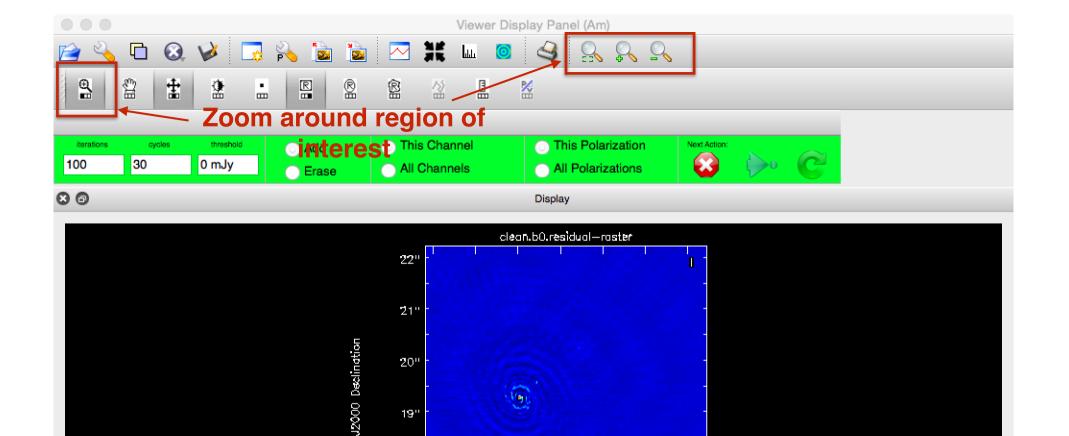
Also, look at the side-lobe structure of the PSF as it will help you when you are de-convolving the image,

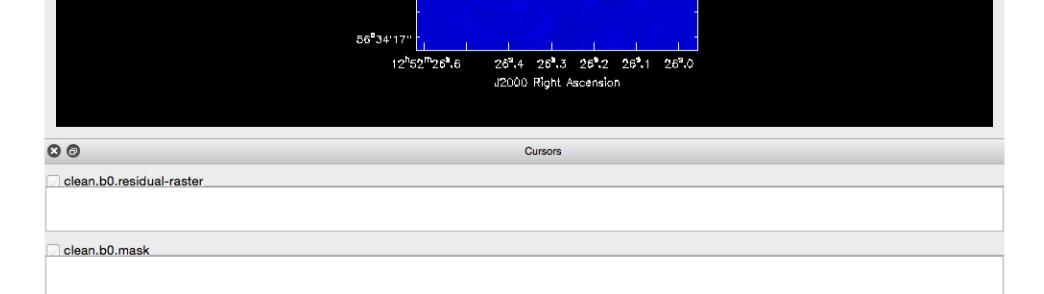
STEP 5 - Deconvolution

The ripples that we see in the dirty images are due to the side-lobe structure of the PSF. This is dependent on the uv-coverage (sampling function) and our choice of weighting. For the remainder of the tutorial, we will use Briggs weighting with robust = 0.

> tget clean # recover the last set of parameters used #
> robust = 0 # set robust parameter to 0 (uniform/natural weighting) #

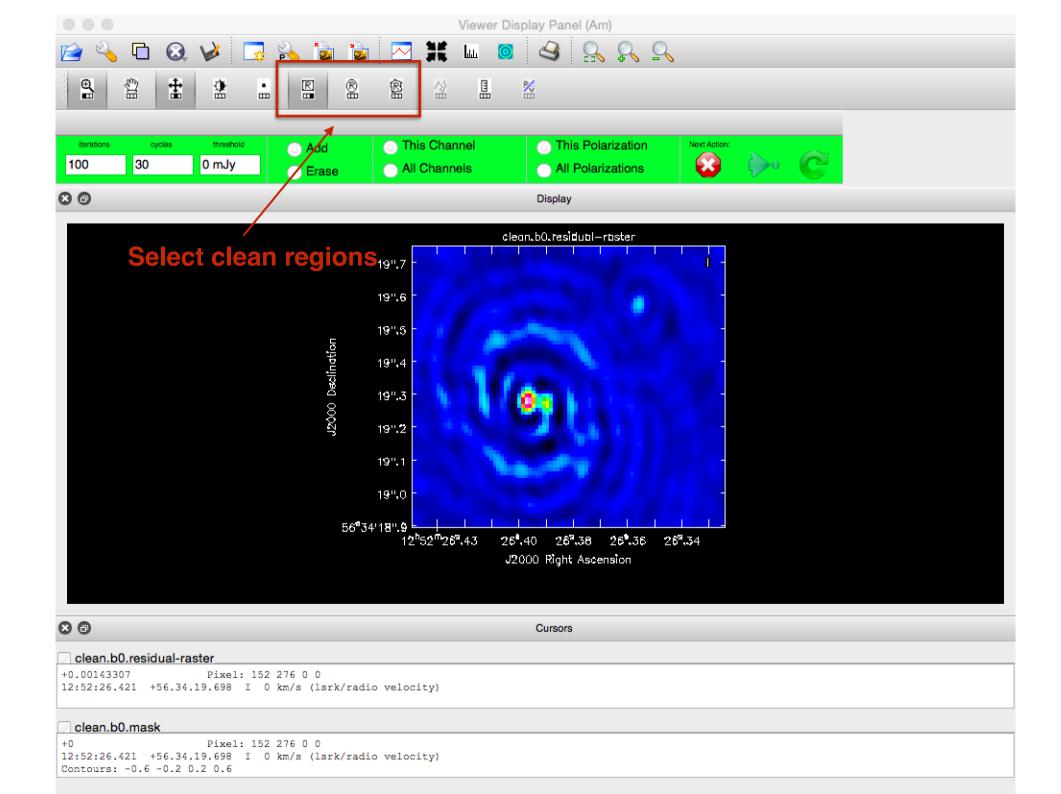
We deconvolve using the CLEAN algorithm, and in this case we will use delta functions to make a model for the source. Other options, for example, truncated Gaussians are possible, but we will not use here.

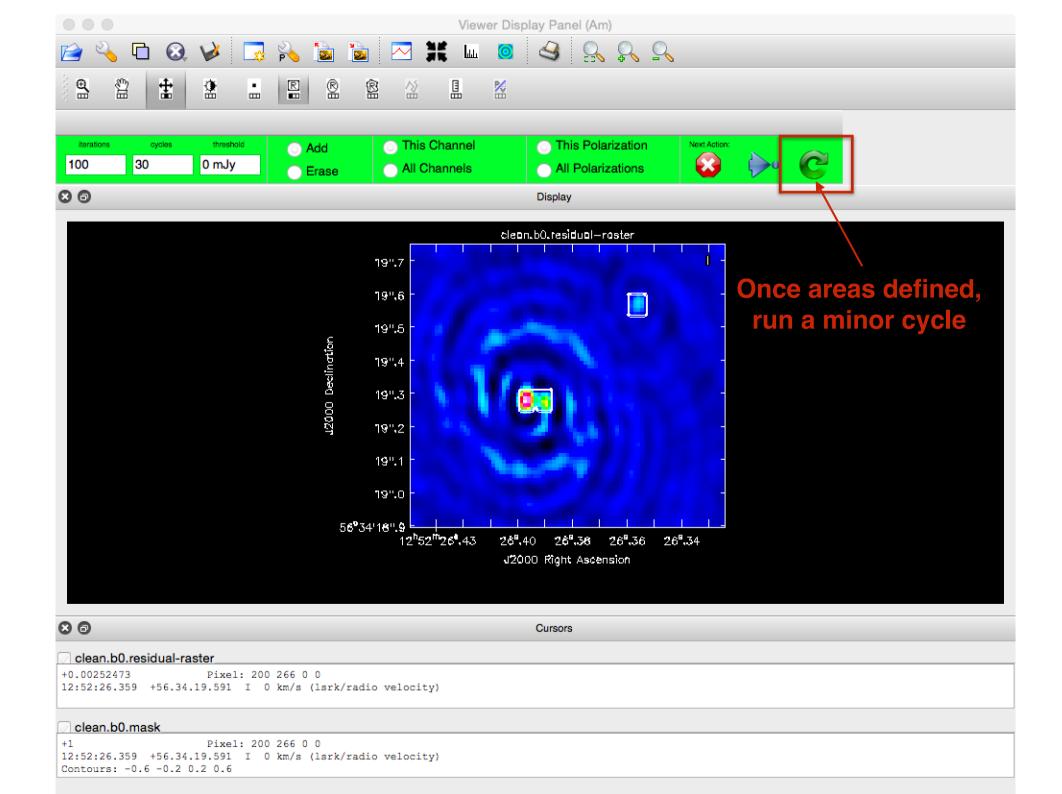

The CLEAN algorithm has the following steps:

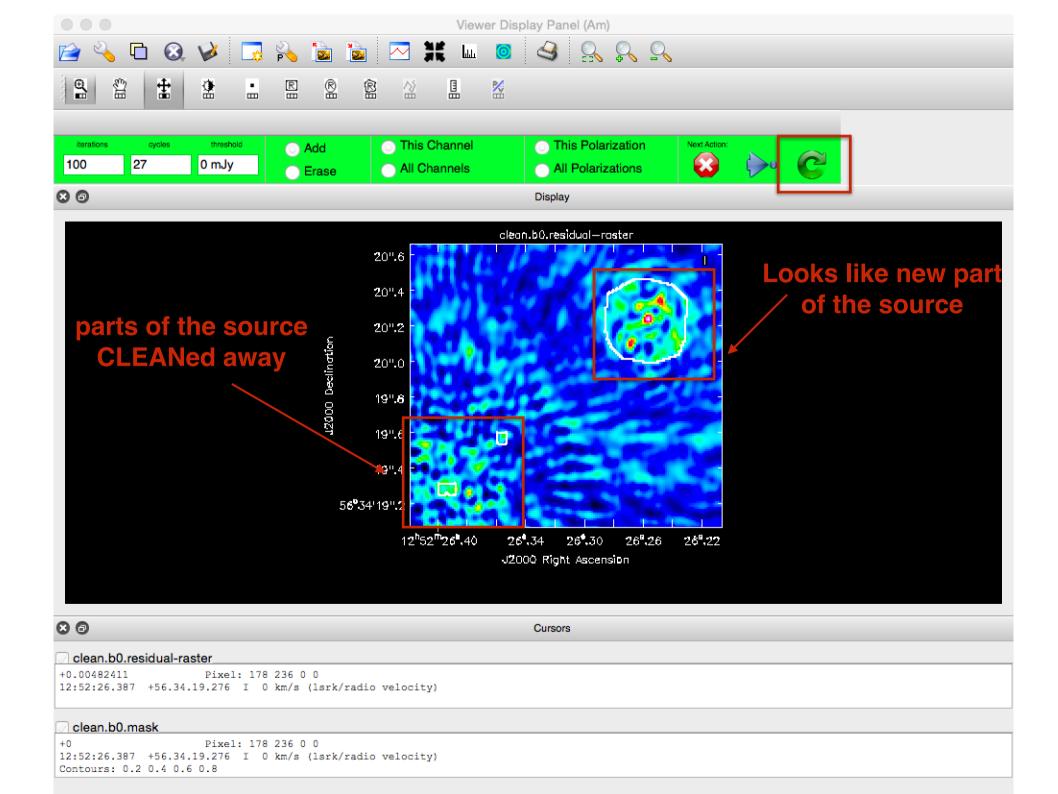

- 1. Identify the surface brightness peak in the map.
- 2. Fit a delta function to this position that has a value of the peak surface brightness * gain factor.
- 3. Subtract the delta function from the image.
- 4. Identify the next brightness peak and repeat steps 2 and 3 (Minor Cycle).
- 5. Subtract the collection of delta functions from the uv-data and re image.
- 6. Repeat steps 1-5 until some threshold is reached.

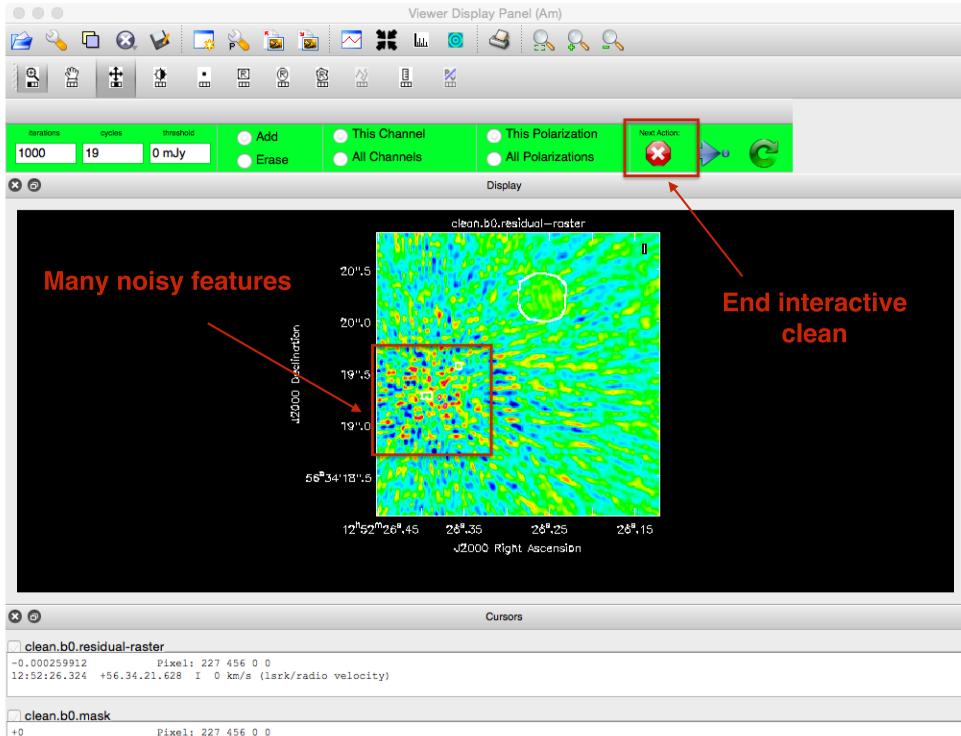
Now we need to define two new parameters for CLEAN

```
> niter = 3000  # number of interactions (trial / error) #
> gain = 0.05  # factor of the peak brightness to be subtracted #
> interactive = T  # to allow interactive cleaning #
> imagename = "clean.b0"  # set new image name to make new file #
> inp  # review parameters #
> go clean  # start FFT and deconvolution #
```


Remember to look at your logger for information.






19"

18"

+0 Pixel: 227 456 0 0 12:52:26.324 +56.34.21.628 I 0 km/s (lsrk/radio velocity) Contours: 0.2 0.4 0.6 0.8 Log Messages (:/Work/ERIS-2015/casapy-20150906-133014.log)

Filter: Time

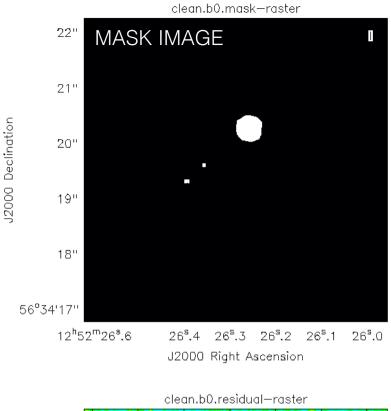
C

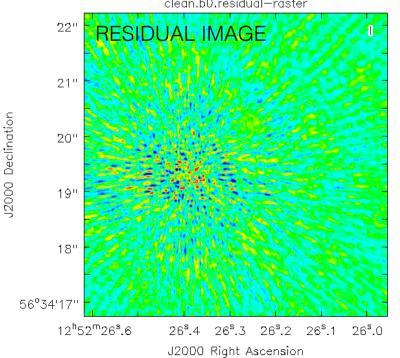
🔒 🔒 🚔 📈 💭 Search Message:

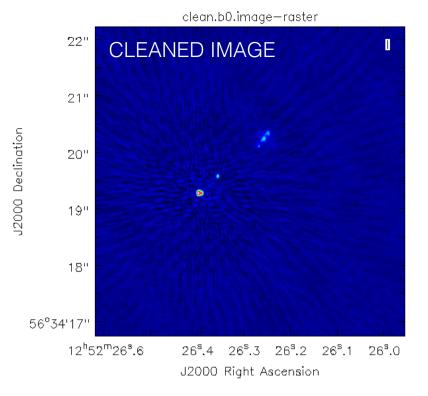
Time Priority	Origin	Message	
INFO	odel::solve	Processing model 0	
INFO	singleSolve	Initial maximum residual: 0.00209852	
INFO	odel::solve	Finished Clark clean inner cycle	
INFO	odel::solve	Clean used 100 iterations to approach a threshhold of 0.000765983	
INFO	odel::solve	0.00969819 Jy <- cleaned in this cycle for model 0 (Total flux : 0.374566Jy)	
INFO	odel::solve	Final maximum residual = 0.00190815	
INFO	odel::solve	Model 0: max, min residuals = 0.00190815, -0.000895521 clean flux 0.374566	
INFO		Threshhold not reached yet.	
INFO		Clean gain = 0.05, Niter = 1000, Threshold = 0 mJy	
INFO		Continuing deconvolution	
INFO		*** Starting major cycle 0	
INFO		The minor-cycle threshold is MAX[0.95 x 0 , peak residual x 0.365011]	
INFO		Maximum residual = 0.00190815, cleaning down to 0.000696496	
INFO		Processing model 0	
INFO		Initial maximum residual: 0.00190815	
INFO		Finished Clark clean inner cycle	
INFO		Clean used 1000 iterations to approach a threshhold of 0.000696496	
INFO		0.0721242 Jy <- cleaned in this cycle for model 0 (Total flux : 0.44669Jy)	
INFO		Final maximum residual = 0.00142458	
INFO		Model 0: max, min residuals = 0.00142458, -0.0010803 clean flux 0.44669	
INFO		Threshhold not reached yet.	
INFO		Restoring Image(s) with the clean-beam	
INFO	clean::::	##### End Task: clean #####	
INFO	clean::::+	***************************************	
Insert Message:		🔶 🕖 🧿 🗆 Lock scroll	

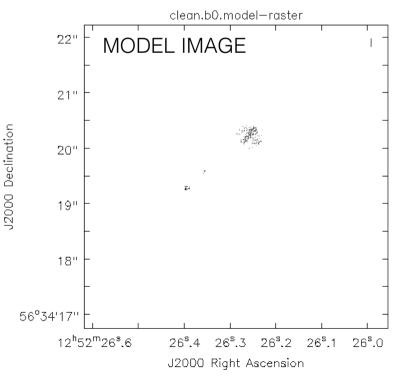
We end clean when we think we have reached a reasonable noise limit.

Note that we have cleaned a total flux of ~0.45 Jy and the threshold is 0.0007 Jy (we will use these values for running CLEAN non-INTERACTIVELY).


We have also generated a new file,


clean.b0.mask # The mask image that defines the CLEAN regions #


Let's look at the final images using the VIEWER


> viewer # start the viewer GUI and DATA MANAGER #

Load the RASTER map of the image, model, residual, mask.

All that seemed to work well, so lets add the parameters of our CLEAN run to our script. First, we add the threshold, give a new image name and set not to run interactively,

tget clean	#	recover the last set of parameters used #
<pre>imagename = "clean.b0.auto"</pre>	#	<pre>set new image name to make new file #</pre>
interactive = F	#	<pre>don't allow interactive cleaning #</pre>
threshold = "0.7mJy"	#	<pre>set threshold to stop cleaning #</pre>
<pre>mask = "clean.b0.mask"</pre>	#	use of pre-defined mask #
inp	#	review parameters #
tput clean	#	save parameters to the .last file $\#$
	<pre>imagename = "clean.b0.auto" interactive = F threshold = "0.7mJy" mask = "clean.b0.mask" inp</pre>	<pre>imagename = "clean.b0.auto" # interactive = F # threshold = "0.7mJy" # mask = "clean.b0.mask" # inp #</pre>

> !more clean.last

and copy the final part to our script (step 2).

```
45
44
45 # description of step
46 mystep = 1
47 if(mystep in thesteps):
      casalog.post('Step '+str(mystep)+' '+step_title[mystep],'INFO')
48
49
      print 'Step ', mystep, step_title[mystep]
50
      clean(vis="1252+5634.ms", imagename="clean.b0.auto", outlierfile="", field="", spw="0~3", selectdata=True, timerange="", uvrange="",
51
           antenna="", scan="", observation="", intent="", mode="mfs", resmooth=False, gridmode="", wprojplanes=-1, facets=1, cfcache="cfcach
           e.dir", rotpainc=5.0, painc=360.0, aterm=True, psterm=Faise, mterm=True, wbawp=False, conjbeams=True, epjtable="", interpolation="
           linear",niter=3000,gain=0.05,threshold="0.7mJy",psfmqde="clark",inagermode="csclean",ftmachine="mosaic",mosweight=False,
scaletype="SAULT",multiscale=[],negcomponent=-1,smallscalebias=0.6,interactive=False,mask="clean.b0.mask",nchan=-1,start=
           0,width=1,outframe="",veltype="radio",imsize=512,cell="0.0107arcsec",phasecenter="",restfreq="",stokes="I",weighting="bri
           ggs", robust=0, uvtaper=False, outertaper=[''], innertaper=['1.0'], modelimage="", restoringbeam=[''], pbcor=False, minpb=0.2,
           usescratch=False, noise="1.0Jy", npixels=0, npercycle=100, cyclefactor=1.5, cyclespeedup=-1, nterms=1, reffreq="", chaniter=False
           ,flatnoise=True,allowchunk=False)
52
53
```

Lets try running everything using our script (this will overwrite our dirty images and make a new clean image). Depending on your computer, this should take about ~5 mins to run.

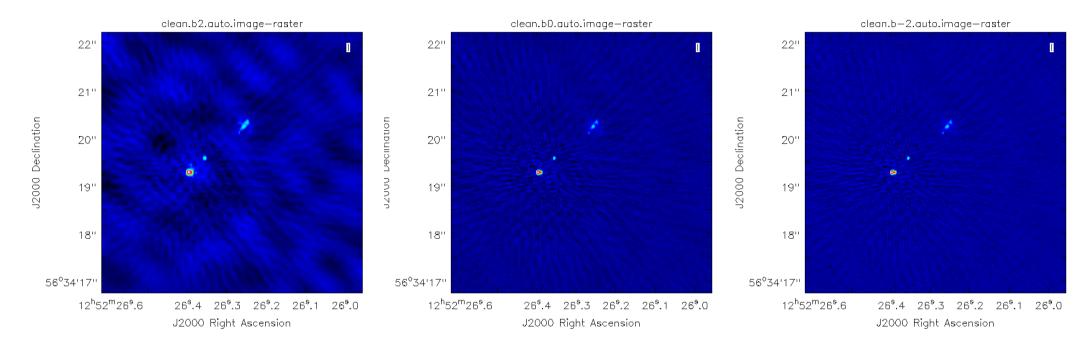
```
> mysteps = [0, 1]  # this will run step 0 #
> execfile('ScriptForImaging.py')  # this run the script#
```

STEP 6 - Image properties

Images

We can use the VIEWER to estimate some image statistics based on our new clean image.

> viewer # start the viewer GUI and DATA MANAGER


Viewer Display Panel (s7) 🖂 💥 🛄 🧕 🍕 🔍 🔍 2 🔞 🥩 2 Double click inside the regions to get the statistics. ₿ 쓃 Ŧ <u>۵</u> R R R 씲 ₽ • 8 80 Display X xterm clean.b0.auto.image-raster Select CASA <61>: (clean.b0.auto.image) Stokes Velocity Frame Doppler Frequency 5.072e+09 5.23836km/s LSRK RADIO BrightnessUnit BeamArea Npts Sum FluxDensity 21'Jy/beam 18.7674 19050 9.921288e+00 5,286446e-01 Mean Rms Std dev Minimum nax i mum 5.208025e-04 4.284416e-03 4.252756e-03 -5.100328e-03 1.244205e-01 J2000 Declination region count 20'(clean.b0.auto.image) 19" Stokes Velocity Frame Doppler Frequency B 5.072e+09 5.23836km/s LSRK RADIO T B FluxDensity BrightnessUnit BeamArea Npts Sum Jy/beam 18,7674 95342 -4.165101e-02 -7.816814e-01 18' Mean Rms Std dev Minimum Maximum -8.198710e-06 6.026908e-04 6.026382e-04 -4.210846e-03 3.558525e-03 region count 1 56°34'17 CASA <61>: 1 h. 12^h52^m26^s.6 26^s.4 26^s.3 26^s.2 26^s.1 26^s.0 J2000 Right Ascension Note the flux-density of our target and the rms noise of the image 80 Animators Stokes

Load the RASTER "clean.b0.auto.image" map of the VIEWER.

STEP 6 - Student exercise

Try making an image of the source using uniform and natural weighting (robust = 2 and -2), do this by making a new step 2 and 3 in your imaging script, and run it over lunch.

Measure the flux-density and rms noise of each map, how do they compare.