Magnetic fields around evolved stars: theory & radio/submm (line) observations

Wouter Vlemmings

Chalmers University of Technology / Onsala Space Observatory / Nordic ALMA Regional Center

EUROPEAN ARC ALMA Regional Centre || Nordic

erc

Established by the European Commissio

European Research Council Vetenskapsrådet

Outline

- Introduction
- B-fields and binaries
 - possible Effects of B-fields
 - Observations of B-fields
 - Origin of the magnetic field
- ALMA observations of the stellar activity of Mira A
 - Indications of surface B-field activity?
- Conclusions

STEPS, ESO 2015

B-fields: or (secondary) effect?

- Magnetic fields arising -
 - locally from stellar activity?
 - from disk interaction?
 - from binary interaction?
 - all of the above?

The case for Binaries

- Several PNe central stars are known binaries
 - >10-15% are close binaries
- Single star dynamo action needs source of energy
 - unless convective energy (e.g. Sun)
- AGB superwind from common-envelope ejection?
 - difficult to launch for <2.5 M_{\odot}
- Post-AGB disks could be naturally explained by binaries
- Binaries are primary agents
 - e.g. Collimated jets arise from binary (planet?) induced magnetic field

De Marco et al.; Soker et al., Nordhaus et al., van Winckel et al.

lanetary Nebula Mz

CPD-56 (Zijlstra et al. 2006)

The case for Binaries

anetarv Nebula M

- Several PNe central stars are known binaries
 - 10-15% are close binaries
- Single star dynamo action needs source of energy
 - unless convective energy (e.g. Sun)

- AG Where are the AGB binaries?
 - difficult to launch for <2.5 M_{\odot}
- Post-AGB disks could be naturally explained by binaries
- Binaries are primary agents
 - e.g. Collimated jets arise from binary (planet?) induced magnetic field

CPD-56 (Zijlstra et al. 2006)

De Marco et al.; Soker et al., Nordhaus et al., van Winckel et al.

The case for Binaries

Shaping the envelope

Direct Envelope Ejection

Outflow is predominately equatorial.

Dynamo Driven Ejection

Outflow is aligned around the rotation axis and is magnetically collimated.

Disk Driven Ejection

Shred Secondary Outflow is aligned with rotation axis.

Shaping the envelope

• MHD jet launching fairly well developed for YSOs

- different models (e.g. Blandford & Paine 1985; Shu et al. 1994)
 - 'Fling' vs. 'Spring' (e.g. Frank, Blackman et al.)
 - Energetic estimates state typical values of few Gauss to launch PNe jets (e.g. Tocknell et al. 2013)
- Thermally driven jets? (e.g. Soker 2006)

Companion + disk

Alfvén-wave driven mass loss

- Low-frequency occilations of the magnetic field and coupled ions
 - injecting energy in the wind
- General Alfvén wind reaches too high velocity
 - AGB stars would naturally provide dissipation:
 - neutral gas interaction at lower temperatures
 - widening magnetic flux tubes
 - reflected waves
 - mode conversion for non-straight fields
- Potentially needed for supergiants, though hybrid models work for AGBs

e.g. Hartmann & MacGregor 1980, Falceta-Gonçalves et al. 2006, (Hybrid models) Thirumalai & Heyl 2010

What do the observations tell us?

B-field strength AGB envelopes

- Oxygen rich:
 - SiO at 2 R_*
 - B~3.5 (up to 10s) G [assuming Zeeman]
 - H_2O at ~5-80 AU
 - B~0.1-2 G
 - OH at ~100-10.000 AU
 - B~1-10 mG
- Carbon rich:
 - CN at ~2500 AU
 - B~7-10 mG

Vlemmings et al. 2002, 2005 Leal-Ferreira et al. 2013 Kemball et al. 1997, 2009 Herpin et al. 2006, 2009 Etoka et al. 2004 Reid et al. 1976 Amiri et al. 2012

B-field strength AGB envelopes

- Oxygen rich:
 - SiO at 2 R*
 - B~3.5 (up to 10s) G [assuming Zeeman]
 - H₂O at ~5-80 AU
 - B~0.1-2 G
 - OH at ~100-10.000 AU
 - B~1-10 mG
- Carbon rich:
 - CN at ~2500 AU
 - B~7-10 mG

Vlemmings et al. 2002, 2005 Leal-Ferreira et al. 2013 Kemball et al. 1997, 2009 Herpin et al. 2006, 2009 Etoka et al. 2004 Reid et al. 1976 Amiri et al. 2012

B-field strength AGB envelopes

- Oxygen rich:
 - SiO at 2 R*
 - B~3.5 (up to 10s) G [assuming Zeeman]
 - H₂O at ~5-80 AU
 - B~0.1-2 G
 - OH at ~100-10.000 AU
 - B~1-10 mG
- Carbon rich:
 - CN at ~2500 AU
 - B~7-10 mG

Vlemmings et al. 2002, 2005 Leal-Ferreira et al. 2013 Kemball et al. 1997, 2009 Herpin et al. 2006, 2009 Etoka et al. 2004 Reid et al. 1976 Amiri et al. 2012

Energy densities

Maser	V _{exp} [km/s]	R _{star} [AU]	B [G]	n _{H2} [cm ⁻³]	Т [K]	B²/8 π [dyne/cm ²]	nkT [dyne/cm ²]	ρ V² exp [dyne/cm ²]	Alfvén Speed [km/s]
ОН	~10	~500	~0.003	~10 ⁶	~300	10-6.4	10-7.4	10-5.9	~8
H ₂ O	~8	~25	~0.1-0.3	~10 ⁸	~500	10 -3.3 -10 -2.4	10-5.2	10-4.1	~300
SiO	~5	~3	~3.5	~10 ¹⁰	~1300	10+0.1	10-2.7	10-2.5	~100
SiO non-	~5	~10-15	~0.015	$\sim 7.5 \times 10^{8}$	~700	10-5.0	10-4.2	10-3.6	
Zeeman	~5	~10	~0.050	$\sim 7.5 \times 10^{8}$	~700	10-3.9	10-4.2	10-3.6	
	~8	~20	~0.050	~7.5x10 ⁷	~700	10 ^{-3.9}	10-5.2	10-4.2	
photo- sphere	~5		~1-10?	~10 ¹¹	~2500	10 [-1.4 - +0.6]	10 ^[-1.5]	10[-1.5]	~10
X Cyg	~3		2-3	~10 ¹⁰	~2600	10[-0.6]	10-2.4	10-2.9	

Magnetic energy dominates to ~50 AU ➡ 'launch' region ~50 R_i (Blackman 2009) But: Ionization fraction in the inner envelope is low (~2×10⁻⁵; Gaulain & Mauron 1996) so limited coupling until onset of ionization

Field morphology

• Isolated pockets of compressed field lines, or a large scale field?

• How to explain the similar structures seen over many hundreds of AU from the star?

Large scale fields (VX Sgr)

- SiO J=5-4 maser polarization
 - SMA observations at 215 GHz
 - Fits dipole field with: $PA \sim 220^{\circ}$ and $\theta \sim 40^{\circ}$
 - Consistent with water and OH observations
- Implies overall field shape maintained from few to 1000s of AU.

Goldreich-Kylafis effect

- Linear polarization induced by anisotropic radiation field and small Zeeman splitting
- Traces B-field if Zeeman rate dominates

$$v_{g} = \frac{\mu B_{0}}{h} = 7.6 \times 10^{-4} \left(\frac{B_{0}}{10^{-6} \text{ gauss}}\right) \left(\frac{\mu}{\mu_{N}}\right) \text{s}^{-1} ,$$

$$C = N_{\text{H}_{2}} \langle \sigma v_{T} \rangle = 9.4 \times 10^{-9} \left(\frac{N_{\text{H}_{2}}}{10^{3} \text{ cm}^{-3}}\right) \left(\frac{T}{30 \text{ K}}\right)^{1/2} \text{s}^{-1} ,$$

$$A_{a,b} = \frac{64\pi^{4} d^{2}}{3h\lambda_{r}^{3}} = 1.8 \times 10^{-7} \left(\frac{0.26 \text{ cm}}{\lambda_{r}}\right)^{3} \left(\frac{d}{0.1 \text{ debye}}\right)^{2} \text{s}^{-1} ,$$
Kylafis 1983

- Observations indicates the CO, CS and SiO vectors trace magnetic field and not radiative anisotropies
- IK Tau shows consistent large scale field from thermal SiO out to CO(2-1)

Goldreich-Kylafis effect

post-AGB / p-PNe

- Rotten Egg Nebula (symbiotic....)
- H_2O masers magnetic field measurement
 - Extrapolated (B $\phi \propto r^{-1}$) surface magnetic field of B~3 G. (Leal-Ferreira et al., 2013)

Field origin

- Single stars:
 - Internal dynamo (Blackman et al. 2001)
 - differential rotation between core and envelope
 - rotation drained in 10-50 years (Nordhaus et al. 2006)
 - Need to counteract energy loss
 - Convective energy (sun-like) model predicts magnetically dominated explosion
 - Interaction with circumstellar disk
 - But what is the origin of the disk?
- Binary stars:
 - Accretion disk amplification
 - Companion
- Localized stellar activity

Field origin

- Single stars:
 - Internal dynamo (Blackman et al. 2001)
 - differential rotation between core and envelope
 - rotation drained in 10-50 years (Nordhaus et al. 2006)
 - Need to counteract energy loss
 - Convective energy (sun-like) model predicts magnetically dominated explosion
 - Interaction with circumstellar disk
 - But what is the origin of the disk?
- Binary stars:
 - Accretion disk amplification
 - Companion
- Localized stellar activity

Resolving the stellar disc of Mira A with ALMA

Sofia Ramstedt, Eamon O'Gorman, Liz Humphreys, Markus Wittkowski, Alain Baudry, Margarita Karovksa

Interacting binary system

- Located at 92 pc
- Binary separation ~40 AU
- Accretion disk around Mira B formed from Mira A wind through Wind-Roche-lobe overflow?
- Both Mira A and B are X-ray and UV emitters

ALMA Long Baseline campaign: Mira

ALMA Long Baseline campaign: Mira

ALMA Long Baseline campaign: Mira

Spectral Index

Mira A

STEPS, ESO 2015

Mira A stellar activity

epoch	ν	shape	S_{ν}	major axis / fwhm	axis ratio	position angle	spectral index
	[GHz]		[mJy]	[mas]	major/minor	[°]	
Mira A							
17 Oct 2014	94.2	Disc	35.03 ± 0.04	41.8±0.4	1.20 ± 0.01	54±2	1.73 ± 0.09
29 Oct 2014	228.67	Disc	137.8 ± 0.2	43.28 ± 0.07	1.13 ± 0.02	51.0±0.5	
	228.67	Gaussian	10.13 ± 0.07	4.6 ± 0.5	1.0		
01 Nov 2014	228.67	Disc	140.0 ± 0.2	43.36 ± 0.06	1.12 ± 0.02	50.8 ± 0.6	
	228.67	Gaussian	8.98 ± 0.07	4.7 ± 0.5	1.0		\\

- Band 3 brightness temperature (~5000 K) > predicted (~2000 K) (Reid & Menten 1997)
 - Other (molecular) opacity sources?
- Elongation possibly due to non-radial pulsations

Conclusions

Dynamically important large scale magnetic fields occur in the envelopes of evolved stars

- SiO, H₂O and OH maser observations consistent with solar-type or dipole magnetic field
- Alfvén waves can help drive mass-loss
- Surface fields are consistent and a hotspot on Mira could be indicative of solarlike magnetic activity
- <u>Questions:</u>
 - How widespread are AGB magnetic fields (obs)?
 - Is it dynamically important (obs/models)?
 - What is the origin of the magnetic field (obs/models)?
 - Single star dynamo, binary, heavy planet, disk interaction
 - Are magnetically collimated jets common features of the proto-planetary water fountain sources ?
 - Are they the explanation for asymmetric (bi-polar) PNe?

Conclusions

- Dynamically important large scale magnetic fields occur in the envelopes of evolved stars
 - SiO, H₂O and OH maser observations consistent with solar-type or dipole magnetic field
 - Alfvén waves can help drive mass-loss
 - Surface fields are consistent and a hotspot on Mira could be indicative of solar-

• <u>Questi</u> Magnetic fields vs. Binaries

- How widespread are AGB magnetic f And? s)?
- Is it dynamically important (obs/mod
- What is the origin of the magnetic field (obs/models)?
 - Single star dynamo, binary, heavy planet, disk interaction
- Are magnetically collimated jets common features of the proto-planetary water fountain sources ?
 - Are they the explanation for asymmetric (bi-polar) PNe?