STELLAR END **P**RODUCT**S**

THE LOW MASS - HIGH MASS CONNECTION A workshop focusing on the role of mass loss in the late tages of stellar evolution of stars of all masses

Abstract Submission Deadline - 6 April 2015 -

Enriching CI E in finding Franz Kerschbaum

ALFRED HITCHCOCK'S

clues on complex giants

Tim De Zeeuw	Welcome
Albert Zijlstra (invited)	Grand Overview
Eric Lagadec	Summary of the Recent Physics of Evolved Stars Meeting
Hans Olofsson (invited)	Radio/mm/Submm Observations of AGB and RSG stars
Roberta Humphreys (invited)	RSGs and AGBs in the Optical and Infrared - Evidence for Mass Loss, Circumstellar Eject and Episodic Events
Leonardo Testi (invited)	mm and Submm Interferometry, Current & Future Capabilities
Jean-Philippe Berger (invited)	Optical Interferometry: Current & Future Capabilities

Tim De Zeeuw Albert Zijlstra (invited)

Grand Overview

Welcome

Eric Lagadec

Hans Olofsson (i

Roberta J Leona Jean-F ... determine roles of magnetic fields, binarity, jets and collimated mass loss, metallicity, initial mass, <u>etc.</u> upon stellar evolution and end products – good luck Franz to summarize this!

Stars Meeting

LOSS.

The Messenger

Tim De Zeeuw	Welcome	
Albert Zijlstra (invited)	Grand Overview	
Eric Lagadec	Summary of the Recent Physics of Evolved Stars Meeting	
Hans Olofsson (invited)	Radio/mm/Submm Ober LPSG stars	
Roberta Humphreys (invited)	RSGs and Search With all these high res pics	
Leonardo Testi (invited)	from ALMA and Sphere	
Jean-Philippe Berger (invited)	I think we have to smear them in order to understand them again!	

Tim De Zeeuw	• Avoid high mass and other biases	s!
Albert Zijlstra (invited)	Grand Overview • Interferometry is not a niche!	
Eric Lagadec	Summary of the Recent Physics of Evo. • Photospheric imaging	
Hans Olofsson (invited)	Radio/mm/Submm Observations of AGB and RSG Stars	10
Roberta Humphreys (invited)	RSGs and AGBs in the Optical and Infrared - Evidence for Mass Loss, Circumstellar Ejecta and Episodic Events	K
Leonardo Testi (invited)	mm and Submm Interferometry, Current & Future Capabilities	K
lean-Philippe Berger (invited)	Ontical Interferometry: Current & Euture Canabilities	16

•

ACTION! (The 39 Steps, 1935)

Big samples, surveys, scans!

Rethink, recalibrate formulas!

All models are wrong. Some of them are useful!

(Aringer, 2014)

Georges Meynet (invited)	Some Open Questions on the Physics of Stars
Paola Marigo	Linking Evolution of AGB Stars with Molecular Chemistry in their CSEs
Alain Jorissen	Atmospheric Tomography of Supergiant Stars
Pierre Kervella (invited)	The Atmosphere of Red Supergiants at High Angular Resolution
Michael Gordon	Yellow Supergiants: Unlocking the Mysteries of Post-RSG Evolution
Ramiro De La Reza	Complex Organic and Inorganic Compounds in Shells of Lithium-Rich K Giant Stars
Benoit Mosser (invited)	Mixed Modes in Red Giants: a Window on Stellar Evolution

Georges Meynet (invited)	Some Open Questions on the Physics of Star	S		
Paola Marigo	Linking Evolution of AGB Stars with Molecular Chemistry in their CSEs			
Alain Jorissen	Atmospheric Tomography of Supergiant Star	S		
Pierre Kervella (invited)	The Atmosphere of Red Supergiants at High	Helium flas		
Michael Gordon	Yellow Supergiants: Unlocking the Mysterie			
Ramiro De La Reza	Complex Organic and Inorganic Compound	_ 0.8 1.2 1.6 2.0 2.4 2.8 _ M / MSun _		
Benoit Mosser (invited)	Mixed Modes in Red Giants: a Window on S			

sh

Georges Meynet (invited)	Some Open Questions on the Physics of Stars	5	
Paola Marigo	Linking Evolution of AGB Stars with Molecula	ar Chemistry in their CSEs	
Alain Jorissen	Atmospheric Tomography of Supergiant Stars	5	100000
Pierre Kervella (invited)	The Atmosphere of Red Supergiants at High A	Chemical Route	es to HCN Production
Michael Gordon	Yellow Supergiants: Unlocking the Mysteries	CN + H ← HCN + H	HCN comes to equilibrium with CN
Ramiro De La Reza	Complex Organic and Inorganic Compounds i	$n(HCN) = n(CN) \frac{n(H_2)}{R_{\rightarrow}}$	 Non-equilibrium chemistry H₂/H faster production of H₂ ⇒ H₂/H approaches ~1 in higher density region
Benoit Mosser (invited)	Mixed Modes in Red Giants: a Window on St	$n(H) \mathcal{R}_{\leftarrow}$	where chemical reactions are efficient

..... the state

Outer .

800

1000 JD - 2 455 000d

1200

Inner

0.4

3.4 Ben 3.6

3.8

CCF

	Georges Meynet (i	invited) Some Ope	en Questions on the	Physics of Stars	
	Paola Marigo	Linking Ev	olution of AGB Star	s with Molecular Chemistry	y in their CSEs
	Alain Jorissen	Atmosphe	eric Tomography of S	Supergiant Stars	
	Pierre Kervella (inv	vited) The Atmo	osphere of Red Supe	rgiants at High Angular Res	solution
į.	Michael Gordon	Yellow Su	pergiants: Unlo	Betelgeuse	
Obser er	vations models.	Inner masks sample weak lines Outer masks sample strong lines Comparison with 3D CO ⁵ BOLD (4 snapshots): for outer masks especially: 3D CO ⁵ BOLD lines are deeper (factor ~1.5 to 2)	rganic and Inc	Intensity, V band	Degree of linear polarization, V band

1.78e+05

7.11e+05

50 mas

1.60e+06

0.09

0.06

0.03

Asymptotic Giant Branch (AGB) and Red Supergiant (RSG) stars with the following conclusions

- · Comparisons to theoretical pulsating model atmospheres and 3D convection simulations show that both types of models can explain the extensions of Mira variable AGB stars
- · A correlation of atmospheric extension with luminosity is observed for RSG stars but not for AGB stars, possibly pointing to different dominating mechanisms to elevate the atmosphere: Shock fronts for Mira stars; Radiative pressure on molecular lines for RSG stars

AGB (low-to-intermediate mass) and RSG (massive) stars are cool evolved stars with low effective temperatures between about 2500 K and 4000 K, and together spanning a large

range of luminosities. They experience a mass loss rate of up to about 10⁺ to 10⁺ M _m/year, precipitating the return of material to the interstellar medium. The mass-loss process is the drug to about 10⁺ to 10⁺ M _m/year, precipitating the return of material to the interstellar medium. The mass-loss process is the drug to about 10⁺ to 10⁺ M _m/year, precipitating the return of material to the interstellar medium. story in the ingenesis of a manufacture of a manufacture of a gramplitude long-period pulsating oxygen-rich AGB stars (O-rich Mrss), low amplitude (semi-regular pulsating AGB stars, process are surprisingly little understood, in particular for large-amplitude long-period pulsating oxygen-rich AGB stars (O-rich Mrss), low amplitude (semi-regular pulsating AGB stars, and for red supergirants. The mass-loss is initiated within the extended atmospheres located on top of the photosphere up to radii where dust can form, a crucial region that we study

The AMBER instrument is well suited to probe the molecular layer scenario of cool evolved stars. The visibility as a function of wavelength decreases in bands of H2O and CO, indicting a larger extension in molecular layers compared to the continuum forming CO, indicting a larger extension in nocecular layers due to be the solution of model atmospheres (Ireland et al. 2008, 2011), where shock fronts enter the extended atmosphere and levitate it to a few photospheric radii. More details and more examples

> 3-D simulations of AGB stars by Freytag & Hofner (2008) show large convection cells and pulsations that give rise to roughly spherically expanding shock waves, comparable to stellar pulsations Indeed, visibility predictions of the 1-D dynamic model atmospheres above and the 3D simulations are very similar

indicate deviations from point symmetry at all wavelengths and thus a complex non-spherical stratification of the atmosphere. In particular, the strong closure phase signal in the water vap and CO bandpasses is interpreted as a

signature of large-scale inhomogeneities/clumps of molecular layers caused by pulsation- and shock-induced chaotic motion in the extended

Extended atmospheres of RSG stars

VLTI/AMBER observations with VLTI/AMBER of RSG stars show a similar shape of the visibility function versus wavelength, indicating extended molecular layers similar to AGB stars. A comparison to hydrostatic PHOENIX model atmospheres shows that the AMBER spectra can be well reproduced but that the drops of the visibility in the CO bands cannot be reproduced, indicating that the opacities are well included in the models, but that the extension of the CO layers is much too compact in the models compared to observations. More details and more examples are available in Arroyo Torres (2015, PhD thesis Univ. of Valencia), and Arroyo-Torres et al. (2013, 2015)

n the case of RSG stars, 3D simulations of RSG stars lead to atmospheres as compact as hydrostatic PHOENIX models, at least at the spectral resolution of AMBER. The same has been shown for 1-D pulsation models with parameters of RSG stars instead of AGB stars. Shock fronts do not enter the atmosphere in any of these models with parameters of RSG stars. Details in Arroyo-Torres et al. (2015).

The atmospheric extension of RSG stars is observed to correlate with the luminosity, unlike for AGB stars (Arroyo-Torres et al. 2015). ANTO SYCH This points to a process of radiative accelerate on Doppler-shifted molecular lines that levitate (2015-11947) the material for RSG stars, as suggested by Josselin & Plez (2007

References

Arroyo Torrer, B. 2015, PHD Peerk, Univ of Valencia, Spain Arroyo Torrer, B. 2015, PHD Peerk, Univ of Valencia, Spain Arroyo Torrer, B., Witsowak, M., Charastea, J., et al. 2015, A&A, 573, ASD Persing, B. Hohmes, S. 2008, A&A, 483, 371 related, M. J. Schutz, M., Wood, P. K. 2018, MARKS 201, 1894 & 2011, MMRA Metamotic, M. Bioback, D. A., Imana, M., et al. 2011, A&A, 592, LF Metamotic, M. Bioback, D. A., Imana, M., et al. 2011, A&A, 592, LF

A.A. Michelson, undated

Susanne Hoefner (invited)	Dynamical Atmospheres and Winds of AGB Stars: A Theorist's View
Sara Bladh	How M-type AGB Stars Bite the Dust
Theo Khouri	Investigating the Wind-Driving Mechanism in R Doradus
Ward Homan	Analytical Morphological Models and an Application to the CW Leo ALMA Data
Graham Harper (invited)	Testing Theoretical and Semi-Empirical Models of RSG Extended Atmospheres
Claudia Paladini (invited)	Surface Features with VLTI
Xavier Haubois	Probing the Inner Dust Shell of Betelgeuse with Polarimetric Interferometry
Peter Scicluna	Large Dust Grains in RSG Winds: High-Contrast Polarimetric Observations of VY CMa
Anita Richards (invited)	Radio/Sub-mm Clues to the Origins of Asymmetries and Clumps
Eamon O'Gorman	Spatially Resolved Radio/mm Continuum Studies of Red Supergiants
Dinesh Shenoy	Probing Hypergiant Mass Loss with AO Imaging and Polarimetry in the Infrared
Lynn Matthews	Searching for Evidence of Mass Loss on the Cepheid Instability Strip

Susanne Hoefner (invited)	Dynamical Atmospheres and Winds of AGB Stars: A Theoris	-40 -40 -20 0 20 40 -40 -20 X position (mas) X pc
Sara Bladh	How M-type AGB Stars Bite the Dust	0.20 0.15 0.16 0.14
Theo Khouri	Investigating the Wind-Driving Mechanism in R Doradus	0.10 1.0 1.0
Ward Homan	Analytical Morphological Models and an Application to the	0.00 W Hya 1.0 1.2 1.4 1.6 1.8 Wavelength (µm)
Graham Harper (invited)	Testing Theoretical and Semi-Empirical Models of RSG Exten	ded Atmospheres
Claudia Paladini (invited)	Surface Features with VLTI	Measuring grain sizes
Xavier Haubois	Probing the Inner Dust Shell of Betelgeuse with Polarimetric	 Dust scattering → strong size depend
Peter Scicluna	Large Dust Grains in RSG Winds: High-Contrast Polarimetric	• observe $p(\lambda) \Rightarrow$ siz • for VY CMa, avera
Anita Richards (invited)	Radio/Sub-mm Clues to the Origins of Asymmetries and Clu	• grains in S knot ~
Eamon O'Gorman	Spatially Resolved Radio/mm Continuum Studies of Red Sur	1.0- 0.5-
Dinesh Shenoy	Probing Hypergiant Mass Loss with AO Imaging and Polarim	-0.5-
Lynn Matthews	Searching for Evidence of Mass Loss on the Cepheid Instabil	-1.0

Large grains around AGB stars

Combining advanced observational techniques:

Polarimetry \rightarrow identification of starlight scattered by dust

Interferometry \rightarrow spatial scale of dust shell

Multi-wavelength study → constraints on grain size

Results for 3 AGB stars:

0.3 µm grains at 2 stellar radii

→ fits nicely with models of Höfner (2008)

Norris et al. (2012)

- Dust scattering → polarisation
- strong size dependence!
- observe $p(\lambda) \Rightarrow$ size \rightarrow SPHERE
- for VY CMa, average size $\sim 500 \text{ nm} \sim 50 \times \text{ISM}$
- grains in S knot ~ 300 nm

Peter Scicluna

Large dust grains in RSG winds

STEPS 4 / 7

Susanne Hoefner (invited)	Dynamical Atmospheres and Winds of AGB Stars: A Theorist's View			
Sara Bladh	How M-type AGB Stars Bite the Dust			
Theo Khouri	Investigating the Wind-Driving Mechanism in R Doradus			
Ward Homan	Analytical Morphological Models and an Application			
Graham Harper (invited)	Testing Theoretical and Semi-Empirical Models o	Pulsation, convection	and shocks	
Claudia Paladini (invited)	Surface Features with VLTI	t= 28.2 yr t= 28.6 yr	t= 29.0 yr	
Xavier Haubois	Probing the Inner Dust Shell of Betelgeuse with	0- 0-	0	
Peter Scicluna	Large Dust Grains in RSG Winds: High-Contrast P	-500	500-	
Anita Richards (invited)	Radio/Sub-mm Clues to the Origins of Asymmet	t= 28.2 yr t= 28.6 yr	t= 29.0 yr	
Eamon O'Gorman	Spatially Resolved Radio/mm Continuum Studie	500-	500	
Dinesh Shenoy	Probing Hypergiant Mass Loss with AO Imaging	-500 -	500	
Lynn Matthews	Searching for Evidence of Mass Loss on the Cepł			

Time sequences: gas density (top) and surface brightness (bottom)

Cool stars too hot to stand!

Mass Loss Mechanisms & Dust

Susanne Hoefner (invited)	Dynamical Atmospheres and Winds of AGB S
Sara Bladh	How M-type AGB Stars Bite the Dust
Theo Khouri	Investigating the Wind-Driving Mechanism in
Ward Homan	Analytical Morphological Models and an App
Graham Harper (invited)	Testing Theoretical and Semi-Empirical Mode
Claudia Paladini (invited)	Surface Features with VLTI
Xavier Haubois	Probing the Inner Dust Shell of Betelgeuse wi
Peter Scicluna	Large Dust Grains in RSG Winds: High-Contra
Anita Richards (invited)	Radio/Sub-mm Clues to the Origins of Asymn
Eamon O'Gorman	Spatially Resolved Radio/mm Continuum Stu
Dinesh Shenoy	Probing Hypergiant Mass Loss with AO Imagi
Lynn Matthews	Searching for Evidence of Mass Loss on the C

Susanne Hoefner (invited)	Dynamical Atmospheres and Winds of AGB Stars: A Theorist's View		
Sara Bladh	How M-type AGB Stars Bite the Dust		
Theo Khouri	Investigating the Wind-Driving Mechanism in R Doradus		
Ward Homan	Analytical Morphological Models and an Application to the CW Leo ALMA Data		
Graham Harper (invited)	Testing Theoretical and Semi-Empirical Models of RSG Extended Atmospheres		
Claudia Paladini (invit <mark>ed)</mark>	Surface Features with VLTI		
Xavier Haubois	Talk summary		
Peter Scicluna		-	
Anita Richards (invited	SOPA-EXES Spectra Beginnings	nyaical process	
Eamon O'Gorman			
Dinesh Shenoy			
Lynn Matthews	Seeking new constraints	P	

6

eoretical

Susanne Hoefner (invited)	Dynamical Atmospheres and Winds	of AGB Stars: A Theorist's View
Sara Bladh	How M-type AGB Stars Bite the Du	
Theo Khouri	Investigating the Wind-Driving Me	
Ward Homan	Analytical Morphological Models a	The future is not now
Graham Harper (invited)	Testing Theoretical and Semi-Empi	decisions vou make a
Claudia Paladini (invited)	Surface Features with VLTI	now.
Xavier Haubois	Probing the Inner Dust Shell of Be	
Peter Scicluna	Large Dust Grains in RSG Winds: H	What's next for you?
Anita Richards (invited)	Radio/Sub-mm Clues to the Origin	Spectral resolution
Eamon O'Gorman	Spatially Resolved Radio/mm Con	 Time series (constr Different spatial se
Dinesh Shenoy	Probing Hypergiant Mass Loss with	 Different spatial sc Polarization?
Lynn Matthews	Searching for Evidence of Mass Log	

The future is not *now*.

The future is *next*, and it is created by the decisions you make and the actions you take now.

What's next for you?

- Spectral resolution
- Time series (constrain the dynamic)
- Different spatial scales
- Polarization?

Mass Loss Mechanis

Susanne Hoefner (invited)	Dynamical Atmosphere
Sara Bladh	How M-type AGB Stars
Theo Khouri	Investigating the Wind-
Ward Homan	Analytical Morphologic
Graham Harper (invited)	Testing Theoretical and
Claudia Paladini (invited)	Surface Features with V
Xavier Haubois	Probing the Inner Dust
Peter Scicluna	Large Dust Grains in RS
Anita Richards (invited)	Radio/Sub-mm Clues to
Eamon O'Gorman	Spatially Resolved Radio
Dinesh Shenoy	Probing Hypergiant Mas
Lynn Matthews	Searching for Evidence o

Summary I: Spotty stars, clumpy winds

- Stellar hot/cool spots related to wind clumps?
 - Cool spots enhance molecule/dust formation?²
 - Hot spots related to magnetic buoyancy?

- Few clumps per stellar period contain 30-90% mass lost
 Convection (*Jorissen*) chemically distinct? Poster *Gobrecht*
- Wind clumps overdense, overheated, must be overpressurised
 - Yet survive >> sonic turbulence timescale
 - Magnetic confinement?
- Mild asymmetry (except extreme RSG), no rotation
- Whatever the cause, clumps/asymmetry protect dust in ISM?

Anita Richards (invited)	Radio/Sub-mm Clues to the Origins of Asymmetries and Clumps
Eamon O'Gorman	Spatially Resolved Radio/mm Continuum Studies of Red Supergiants
Dinesh Shenoy	Probing Hypergiant Mass Loss with AO Imaging and Polarimetry in the Infrared
Lynn Matthews	Searching for Evidence of Mass Loss on the Cepheid Instability Strip

CONFERENCE SPRIES

...enough riddles to keep us happy for a while... (Van Winckel, 2014)

Two ways to identify a binary: You see it You have no other idea (Noam Soker, 2015)

Orsola De Marco (invited)	Binary Stars Across the Mass Spectrum; From Observations to Theory and Back
Shazrene Mohamed	Shaping the Outflows of Evolved Stars
Michel Hillen	The First mas Image of a Post-AGB Binary: the Inner 10 AU of IRAS08544-4431
Sofia Ramstedt (invited)	Winds and Circumstellar Morphology of Binary AGB Stars with ALMA
Miguel Montarges	The Dusty Disk and Companion of L2 Pup, the nearest AGB Star, Observed with SPHERE
Foteini Lykou	Shaping Nebulae via Disks in AGB Stars
Henri Boffin (invited)	Binary Stars - an Interferometric View
Sebastian Ohlmann	Hydrodynamic Simulations of Common Envelope Phases

Orsola De Marco (invited)

Binary Stars Across the Mass Spectrum; From Observations to Theory and Back

Connecting binary classes

olved Stars

st-AGB Binary: the Inner 10 AU of IRAS08544-4431

orphology of Binary AGB Stars with ALMA

nion of L2 Pup, the nearest AGB Star, Observed with SPHERE

n AGB Stars

etric View

Miszalski+09 of Common Envelope Phases

Orsola De Marco (invited)	Binary Stars Acros	ss the Ma	ss Spectrum; Fro	om Observat	ons to 1	Theory	and E	Back
Shazrene Mohamed	Shaping the Outfl	ows of Ev	olved Stars					
Michel Hillen	The First mas Im	1		et a mar	ار و ¹]			
Sofia Ramstedt (invited)	Winds and Circu	100	- States	-	× [cm × 0.8		100	
Miguel Montarges	The Dusty Disk a	5	1 ac			F		
Foteini Lykou	Shaping Nebulae	y [At			0.6	y [AL	0	
Henri Boffin (invited)	Binary Stars - an	100	Contraction of the second		0.4		100	
Sebastian Ohlmann	Hydrodynamic S	-100	100		0.2		-100	

-100

х [cm² g⁻¹]

0.8

0.6

0.4

0.2

100

15 AU separation

60 AU separation

x [AU]

Mohamed & Podsiadlowski 2007, 2012

Orsola De Marco (invited)	Binary Stars Across the Mass Spectrum; From Observations to Theory and Back
Shazrene Mohamed	Shaping the Outflows of Evolved Stars
Michel Hillen	The First mas Image of a Post-AGB Binary: the Inner 10 AU of IRAS08544-4431
Sofia Ramstedt (invited)	Winds and Circumstellar Morphology of Binary AGB Stars with ALMA
200 ¹³ CO(3	² mpanion of L2 Pup, the nearest AGB Star, Observed with SPHERE
	Disks in AGB Stars
03	40 vis [km s ⁻¹] 50 55 ferometric View
15	tions of Common Envelope Phases
t arcsec	
0 Office	
$\begin{array}{c cccc} -10 & & & & \\ 10 & 5 & 0 & -5 & -10 & & 15 \\ & & & & & & \\ East Offset [arcsec] & & & & \\ \end{array}$	10 5 0 -5 -10 -15 East Offset [arcsec]
Ramstedt et al. 2014	Sofia Pametedt

Don't tell!

(The 39 Steps, 1935)

Binaries, Shells & Shaping

Orsola De Marco (invited)	Binary Stars Across the
Shazrene Mohamed	Shaping the Outflows o
Michel Hillen	The First mas Image of a
Sofia Ramstedt (invited)	Winds and Circumstella
Miguel Montarges	The Dusty Disk and Con
Foteini Lykou	Shaping Nebulae via Di
Henri Boffin (invited)	Binary Stars - an Interfe
Sebastian Ohlmann	Hydrodynamic Simulati

8 July 2015

1/10

ARCSEC

Star 'X'

Foteini Lykou

WR 104 at 2.27 Microns

April 98

160 AU

Orsola De Marco (invited)	Binary Stars Across the Mass Spectrum; Fro	om Observations t	o Theory and Back
Shazrene Mohamed	Shaping the Outflows of Evolved Stars		
Michel Hillen	The First mas Image of a Post-AGB Binary	+ द®+	
Sofia Ramstedt (invited)	Winds and Circumstellar Morphology of I		HR Car: /
Miguel Montarges	The Dusty Disk and Companion of L2 Pup	ALOS TAM SO TILI I A MAR 2016	
Foteini Lykou	Shaping Nebulae via Disks in AGB Stars	I is a final solution of the s	4
Henri Boffin (invited)	Binary Stars - an Interferometric View	8105 mat 85	2 -
Sebastian Ohlmann	Hydrodynamic Simulations of Common E	0.4 2 4 6 8 8 Spatial frequency (10 ⁷ /red) 20 02 Mar 2014	

HR Car: A Binary!

...it is reasonable to hope that in the not too distant future we shall be competent to understand so simple a thing as a star. (Eddington, 1936)

Agnes Lebre (invited)	Surface Magnetism of Cool and Evolved Stars: Harvest from the Spectropolarimetriy
Wouter Vlemmings (invited)	Magnetic Fields in Evolved Stars: Theory & Radio/Submm Line Observations
Laurence Sabin (invited)	Detection of Magnetic Fields in Evolved Stars: From the Envelope to the Photosphere
Alizee Duthu	Magnetic Fields in C-Rich Evolved Objects

Agnes Lebre (invited)

Surface Magnetism of Cool and Evolved Stars: Harvest from the Spectropolarimetriy

First detection of a surface magnetic field on a Mira star

Stokes V signal : associated to the blue component of the I profile

Stokes I profile : typical line doubling of metallic lines due to a shock wave in the atmosphere.

(Lèbre et al. 2014, A&A 561, 85) 12 rs: Theory & Radio/Submm Line Observations

n Evolved Stars: From the Envelope to the Photosphere red Objects

Agnes Lebre (invited)	Surface Magnetism of Cool and E	volved Stars: Harvest from the Spectropolarimetriy
Wouter Vlemmings (invited)	Magnetic Fields in Evolved Stars:	Theory & Radio/Submm Line Observations
Laurence Sabin (invited)	Detection of Magnetic Fields in F	B-field strength AGB envelopes
Alizee Duthu	Magnetic Fields in C-Rich Evolve	D held strength AOD envelopes

- SiO at 2 $R\ast$
 - B~3.5 (up to 10s) G [assuming Zeeman]
- H₂O at ~5-80 AU
 - B~0.1-2 G
- OH at ~100-10.000 AU

Chi Cyg surface

Lèbre et al. 2013

- B~1-10 mG
- Carbon rich:
 - CN at ~2500 AU
 - B~7-10 mG

Vlemmings et al. 2002, 2005 Leal-Ferreira et al. 2013 Kemball et al. 1997, 2009 Herpin et al. 2006, 2009 Etoka et al. 2004 Reid et al. 1976 Amiri et al. 2012

O IKTau 4 □ RTVir ▲ IRC60370 Si0 masers 2 log(B) [G] H₂0 masers 0 AGB Surfa OH masers CN 2 3 $\log(R/R_*)$ Non-Zeeman SiO interpretation Leal-Ferreira et al. 2013 Houde 2014 after Vlemmings et al. 2002,2005

lain McDonald (invited)	How to Make and Break Dust Around Metal-Poor Stars
Jonathan Mackey	Cold Gas in Hot Star Clusters: the Fate of Winds from Red Supergiants

lain McDonald (invited)

How to Make and Break Dust Around Metal-Poor Stars

Jonathan Mackey

Cold Gas in Hot Star Clusters: the Fate of Winds from Red Supergiants

Interpretation

- Correct line ratio —> gas is photoionized.
- N is enriched —> Wind material.
- Blueshifted nebula —> asymmetric pressure is pushing the wind of W26 towards us.
- Comparing to Betelgeuse, the observed nebula of W26 seems like a bow shock.
- There could be a photoionized shell closer to W26, with >0.1 $M_{\odot \rm .}$
- W9 is 0.24pc from W26 (projected) and has a prodigious wind:
 - Mdot $\approx 3.3 \times 10^{-4}~M_{\odot}~yr^{-1}$ and
 - $v_{\infty}\approx 200~km~s^{-1}$ (Dougherty+2010).

Most of the cluster could be embedded in the wind of W9.

The Dust Input from Asymptotic Giant & Red Supergiant Stars to The Small Magellanic Cloud Sundar Srinivasan (孫達會)¹.

M. L. Boyer^{2,3}, F. Kemper¹, M. Meixner⁴, D. Riebel⁵ & B. A. Sargent⁵ 'Acodemia Sinica Institute of Astronomy & Astrophysics (sundar@esias.asinca.edu.tw). VASA GSFC, ³ORAU, ⁴STScI, ²USNA, ⁴Rochester Institute of Technology

The Life Cycle of Dust

Asymptotic giant branch (AGB) and red supergiant (RSG) stars eject a large fraction of their mass into the interstellar medium (ISM) in the form of gas and dust. The total rate of AGB/RSG dust return is therefore a key parameter influencing galactic chemical enrichment. In this work, we use a pre-computed grid of radiative transfer (RT) models for AGB/RSG dust shells to estimate the luminosities and dust-production rates (DPRs) of the entire mass-losing population of the small Magelianic Cloud (SMC).

We have already applied this method to estimate the AGB/RSG dust budget in the Large Magellanic Cloud (LMC; Riebel+ 2012), finding that a small number (SS%) of highly evolved "extreme" AGB stars produce more than 75% of the dust it is therefore very important to have a complete inventory of the dustiess sources. This detail is the run of our current study. The paper describing these results will be solutineted this month.

Sample Selection and Fitting Procedure

Compute mean fluxes using multiple epochs of data at various wavelengths to constrain source variability:

Waxwiength	Fitters	Source
Centical	safety .	Magellanc Clouds Photometric Survey (MCPS; Zeritaky+ 2002)
Optical	V and I (mass response), amplitude)	Optimal Gravitational Lensing Experiment (DGLE: Udalative 2008)
Sec. of seal	24	2 million AS-Shy Burvey (2MAND), Skrutakie- 20081
Same indicated		Intraliad Burney Facility (IRSP; Kallor 2007)
Montwel	Spitow IRAC & MIPS24	SAGE-SMC (2 epoints) + Spitzer Survey of the SMC (SPMC. 1 epoch Exception 2007)
Maletand	875.4.18	AXARE (Re= 3000)
Max Induced	111	Wide Infrared Survey Explorer (MISE, Wrights 2012)

Photometry (circles) and IRS spectra (black: Rufflet 2015) fit with GRAMS models (solid blue: O-rich, solid red: C-rich). Top: examples of good fits, one for each chemical type. Bettor examples of good (left) and bad (right) fits to FIR objects.

References/Links Bolanca, A. D. et al. 2007, ApJ, 455, 212 Boyer, H. L. et al. 2012, ApJ, 748, 40 Gordon, K. D. et al. 2011, ApJ, 142, 102 Grunnall, R. A. et al. 2008, ApJ, 488, 19 Hay, Y. et al. 2010, ApJ, 514, A2 Kato, D. et al. 2007, PMSJ, 59, 615 Bushel, D. et al. 2007, PMSJ, 59, 615

 Use near- and mid-IR colour-magnitude diagrams (CMDs) to select RSG, O-rich and C-rich AGB, and extreme AGB candidates.
 Remove contaminants (mainly YSOs, post-AGBs, and foreground

- objects). Our final sample consists of about 9,600 sources, including about 340 extreme AGB candidates.
 Fite with radiative, transfer models from the Grid of RSG and AGB Models' (GRAMS: Sargert 2011; Srinvasm* 2011), to find beschir
- ModelS (GRAMS: Sargent+ 2011, Srinivasan+ 2011), to find best-fit values for luminosity, dust-production rate, and chemical type (O-rich or C-rich).

 Global dust-production rate (DPR) from all AGBs and RSGs: (1.7 - 3.4) × 10⁻⁶ M_{sun} yr⁻¹

 This number is <u>consistent with previous determinations</u> (Boyer+ 2012, Matsuura+ 2013), and this input alone <u>cannot</u> explain the observed ISM dust mass.

 Ratio of C-rich AGBs put out three times as much dust as O-rich AGBs. In the LMC, this ratio is about two and a half. This is consistent with the lower metallicity of the SMC.

 Compared to the LMC, the SMC lacks extremely dusty sources (e.g., sources with SiC in absorption; Gruendl+ 2008)
 The large range in global DPR is due to the uncertain nature

of the sources with the highest DPRs – the so-called farinfrared (EIR) objects (Boyer+ 2012). Some of them are likely AGB stars (see figure), but their colours are consistent with young stellar objects. Mid.4R spectroscopy or long-wavelength study is necessary to confirm their identity.

 The other major source of uncertainty in DPR estimates is the choice of optical constants, which can cause discrepancies of up to 5x!!

> STSct download into for the CRAMS models has lower-statestooring annumouth Need gate CRAMS first on your data. Try life We Observatory SID Analysis (ROMO: http://www.stmy.cr.com/guma.nosi

Joel Kastner (invited)	Planetary Nebulae: a Conter	nporary (Multiwavelength) Perspective
Valentin Bujarrabal (invited)	Molecular Line Observations	ChanPlaNS: overview of
Daniel Tafoya	Sub-millimeter Maser Emiss	X-rays: diagnostic of PN
Mark Hollands	Ancient Planetary Systems A	

Rubina Kotak (invited)	Supernovae
Mikako Matsuura (invited)	Supernova 1987A
Noam Soker	Nebulae Powered by a Cen
Santiago Gonzalez	The Rise-Time of Type II Su

PlaNS: overview of results s: diagnostic of PN evolutionary state

Joel Kastner (invited)	Planetary Nebulae: a Contemporary (Multiwavelength) Perspective	
Valentin Bujarrabal (invited)	Molecular Line Observations of Planetary and Protoplanetary Nebulae: Keplerian Disks	
Daniel Tafoya	Sub-millimeter Mas	High-quality ALMA maps of the Red Rectangle
Mark Hollands	Ancient Planetary S	**preliminary** LTE modeling of ¹² CO J=3–2

Rubina Kotak (invited)	Supernovae
Mikako Matsuura (invited)	Supernova 1987A
Noam Soker	Nebulae Powered k
Santiago Gonzalez	The Rise-Time of Ty

outflow structure, density & velocity $T_k \gtrsim 200$ K; rotation not displayed

Moderate mass, velocity, and linear momentum

We interpret: material extracted from the disk -> limit to the disk lifetime

Joel Kastner (invited)	Planetary Nebulae: a Contemporary (Multiwavelength) Perspective
Valentin Bujarrabal (invited)	Molecular Line Observations of Planetary and Protoplanetary Nebulae: Keplerian Disks
Daniel Tafoya	Sub-millimeter Maser Emission from Water Fountain Nebulae
Mark Hollands	Ancient Planetary Systems Around White Dwarfs

Rubina Kotak (invited)	Supernovae
Mikako Matsuura (invited)	Supernova 1987A
Noam Soker	Nebulae Powered by a Central Explosion
Santiago Gonzalez	The Rise-Time of Type II Supernovae

ALMA confine cold dust is from the ejecta

~0.5 M_☉ of dust is from ejecta

Ejecta		ALMA 450 μm image of dust
	Ring (progenitor; RSG)	•

Indebetouw, Matsuura et al. (2014, 782, L2)

Rubina Kotak (invited)	Supernovae
Mikako Matsuura (invited)	Supernova 1987A
Noam Soker	Nebulae Powered by a Central Explosion
Santiago Gonzalez	The Rise-Time of Type II Supernovae

Joel Kastner (invited)	Planetary Nebulae: a Contemp
Valentin Bujarrabal (invited)	Molecular Line Observations o
Daniel Tafoya	Sub-millimeter Maser Emission
Mark Hollands	Ancient Planetary Systems Arc

loel Kastner (invited)	Planetary Nebulae: a Contemporary (Multiw
Valentin Bujarrabal (invited)	Molecular Line Observations of Planetary ar
Daniel Tafoya	Sub-millimeter Maser Emission from Water
Mark Hollands	Ancient Planetary Systems Around White Dy

A short summary

Must Include JETs (MIJET)

This research was not supported by any grant

Rubina Kotak (invited)	Supernovae
Mikako Matsuura (invited)	Supernova 1987A
Noam Soker	Nebulae Powered by a Central Explosion
Santiago Gonzalez	The Rise-Time of Type II Supernovae

So?

All this was very loose guessing, and I don't pretend it was ingenious or scientific. (The 39 Steps, 1935)

Let's meet again in 2018!

1

