Statistical Properties of the Stellar Haloes of Galaxies

Richard D'Souza, Guinevere Kauffmann MPA

Motivation

- How do we validate and update our current global paradigm of how stellar haloes are formed?
- By studying the average statistical properties of the smooth component of the stellar haloes of galaxies.
- In the near future, only possible way is to stack a large number of galaxies of similar types together from all sky surveys.
- Shift in motivation for stacking: from trying to beat S/N to studying the average properties of large populations of galaxies.

Stacking Galaxies

- Examples of stacking galaxies with SDSS data set: Zibetti et al. (2004, 2005), de Jong (2008), Tal & van Dokkhum (2008), D'Souza et al. (2013)
- History of stacking is the history of dealing with the various systematics:
 - Background subtraction, PSF and Effective masking
 - Dealing with unresolved objects, Type of stacking: median, mean, weighted.
- Sample definition (isolation criterion, accounting for magnitude limited survey)

Example of Systematics: PSI

Not only the PSF of the central galaxy but also from the PSF of masked neighbours

Example: Median and Clipped-mean stacks

Stacking as a function of Stellar Mass and Galaxy type

D'Souza et al. 2014

- Galaxies from MPA-JHU: 10.0 M_sun to 11.4 M_sun, 0.06 < z < 0.1 in g and r.
- ISOLATION criterion
- SDSS DR9 improved background subtraction.
- Preparation for stacking: Masking, transforming to z~0.1, de-reddening, alignment, removal of disk galaxies, residual background subtraction, etc.

Ellipticity of Stellar Haloes

- Ellipticity as a function of stellar mass and galaxy type.
- Stellar haloes of late-type galaxies tend to be spherical, while of earlytype galaxies tend to be elliptical.
- Ellipticity increases with stellar mass of the galaxy.

 Stellar haloes extend out to 100 kpc

- surface
 brightness and
 g-r colour
 profiles are a
 function of both
 stellar mass and
 galaxy type.
- Stellar halo light is bluer than the main galaxy.
- Colour of stellar halo is redder for more massive galaxies

Projected Outer slopes of the surface brightness profiles

Surface Density profiles from stacks agree with predictions from particle tagging methods

Stacking as a function of Halo Mass D'Souza et al (In preparation)

- Use a galaxy group catalogue (Yang et al. 2008)
- Galaxies at the center of groups and clusters.
- Have a handle on both halo mass and stellar halos.
- Halo mass function of environment and number of satellite neighbours

Stacking in Halo Mass Bins

0.

0.

Stellar Haloes as a function of Environment

Main Results

- Fraction of accreted stellar material increases with as a function of stellar mass and is larger in early types than late-types.
- Stellar haloes of late types tend to be more elliptical. Ellipticity increases with stellar mass.
- g-r colour of the outer halo light of late types is bluer than the centre of the galaxy and is an increasing function of stellar mass.
- Multi-component Sersic models are needed to fit the two dimensional surface brightness profiles.

• For a given stellar mass, the stellar halo is also a function of the environment.