Resolved stellar halos in early

type galaxies

Marina Rejkuba ESO, Germany

Early type galaxy formation scenarios

- Early monolithic collapse scenario:
 - assembly in a dissipative gaseous collapse, either from a unique cloud or many gaseous clumps, but not out of preexisting stars (e.g. Eggen, Lynden-Bell & Sandage 1962)
- Hierarchical merging scenario:
 - successive non-dissipative mergers of smaller systems over an extended time likely forming from pre-existing disk galaxies' stars (Toomre 1977, Kauffmann+93)

Formation diagnostics from model colour-magnitude diagrams

Formation diagnostics from model CMDs

Ikuta 2007:

 Early monolithic collapse (MC) scenario:
⇒ single peak & metal-rich MDF

 \Rightarrow red HB

- Hierarchical merging (MM) scenario:
 - ⇒ two peaks in MDF higher frequency of metal-poor stars, which are born in the progenitor galaxies
 - \Rightarrow blue (extended) HB

Frequency of tidal features in nearby luminous elliptical galaxies

Tal et al. 2009: tidal disturbance in 73% of nearby luminous elliptical galaxies \rightarrow mass assembly rate of $dM/M \sim 0.2$ per Gyr

→elliptical galaxies grow through mostly "dry" mergers (little star formation)

Name	Туре	M _v (mag)	(m-M) ₀ (mag)	Distance (Mpc)	Environment	Resolved stellar pops studies
Maffei 1	E	-21.6	27.7 A _v ~5.1	3.4	Maffei/IC342 group	Davidge+01,02; Wu+14
NGC 5128 = Cen A	E/S0 pec; Sy2	-21.5	27.91	3.8	Centaurus A group	Soria+96; Harris+99, 00,02; Ferrarese+07; Rejkuba+03,05,11,14; Crnojevic+13; Bird+14
NGC 3115	SO	-21.1	30.05	10.2	NGC 3115 group	Elston 1997; Peacock+15
NGC 3379 = M 105	E1	-20.9	30.06	10.2	Leo I group	Sakai+97; Gregg+04; Harris et al. 2007b
NGC 3377	E5	-20.0	30.17	10.8	Leo I group	Harris et al. 2007a
M 87 = NGC 4486	E0 pec; Syfert; cD	-22.5	31.08	16.4	Virgo cluster	Bird et al. 2010

Name	Туре	M _v (mag)	(m-M) _o (mag)	Distance (Mpc)	Environment	Resolved stellar pops studies	
Maffei 1	E	-21.6	27.7 A _v ~5.1	3.4	Maffei/IC342 group	Davidge+01,02; Wu, Tully+14	
NGC 5128 = Cen A	E/S0 pec; Sy2	-21.5	27.91	3.8	Centaurus A group	Soria+96; Harris+99, 00,02; Ferrarese+07; Rejkuba+03,05,11,14; Crnojevic+13; Bird+14	
NGC 3115	SO	-21.1	30.05	10.2	NGC 3115 group	Elston 1997; Peacock+15	
NGC 3379 = M 105	E1	-20.9	30.06	10.2	Leo I group	Sakai+97; Gregg+04; Harris et al. 2007b	
NGC 3377	E5	-20.0	30.17	10.8	Leo I group	Harris et al. 2007a	
M 87 = NGC 4486	E0 pec; Syfert; cD	-22.5	31.08	16.4	Virgo cluster	Bird et al. 2010	

Getting a handle on age

Two bursts

 No improvement by combining old αenhanced with younger solar scaled simulations

Peng et al. 2002

Foreground + background contamination

Field 7 (140 kpc; 25 Reff)

Rejkuba et al. 2014

NGC 5128 Stellar Halo Metallicity Gradient

Rejkuba et al. 2014

extended sources

NGC 5128: Stellar Density Gradient

Rejkuba et al. 2014

Summary: NGC 5128

- The bulk of the halo stars formed at redshift $z \ge 2$
- Fast chemical enrichment: ~12 Gyr old stars have supersolar metallicity
- Metallicity and stellar density gradients mapped to 25 R_{eff}
- Halo extends over the entire surveyed area:
 - 140 kpc along the major axis
 - elongated halo
 - high average metallicity
 - we have not reached the end of the galaxy halo

NGC 3377: an intermediate-mass elliptical

Harris+2007a

 M_V =-20; R_{eff} =1.1'; 3.8' is equivalent to 12kpc

NGC 3379: transition to a metal-poor halo

NGC 3379: transition to a metal-poor halo

Comparison with chemical evolution models

TABLE 2

FITTING PARAMETERS FOR ACCRETING-BOX MODELS

Parameter	Outer Fields	Inner Field	Outer Fields	Inner Field
Z_g (Z _O)	0.0	0.0	0.2	0.2
y (Z⊙)	0.32	0.87	0.25	0.81
τ_1/δ_t	7	5	1	0
τ_2/δ_t	35	20	19	12
<i>M</i> _f / <i>M</i> ₀	3.5	3.9	1.9	2.4
Maximum SFR (1 M _☉ /y)	225	155	240	158

NGC 3377

NGC 3379

Conclusions

- MDFs in the halo are broad
- Accreting box infall model: Assuming gas consumption within ~2Gyr → SFR~150-250 M_☉/yr
- Transition to the metal-poor halo beyond ~12 Re?
- Smooth halo or accretion of low-mass satellites
- Complementarity of the wide field and deep observations: know where and what you are looking at

Nearby luminous elliptical galaxy outskirts

Tal et al. 2009: complete sample of luminous elliptical galaxies ($M_B < -20$) at distances 15–50 Mpc, selected from the Tully catalog of nearby galaxies

