FORNAX DEEP SURVEY: Unveiling the faint stellar halos of the early-type galaxies in the Fornax Cluster

Enrichetta Iodice

INAF-Astronomical Observatory of Capodimonte Naples - Italy

on behalf of the FDS core Team:

M. Capaccioli, M. Cantiello, A. Grado, M. Hilker, L. Limatola, T. Lisker, N.R. Napolitano, R. Peletier, M. Spavone

FORNAX DEEP SURVEY with VLT Survey Telescope

- new deep survey of the Fornax Cluster to obtain imaging in the u, g, r, i bands at VST
- join project based on INAF & OmegaCam GTO

FORNAX DEEP SURVEY with VLT Survey Telescope

- new deep survey of the Fornax Cluster to obtain imaging in the u, g, r, i bands at VST
- join project based on INAF & OmegaCam GTO

main scientific aims

- SB and color profiles out to 8-10 Re
- GCs and compact galaxies
- satellite galaxies
- Long-lived external structures, ICL, connection with the environment

the up-to-date largest mosaic of the Fornax Cluster 5 x 5 degrees that extends up to the virial radius of the cluster

Wednesday, February 25, 2015

tot exp time for each 1 deg² field: 17.8 hrs *u* band 12.8 hrs *g* band 12.8 hrs *r* band 7.8 hrs *i* band

Wednesday, February 25, 2015

tot exp time for each 1 deg² field: 17.8 hrs *u* band 12.8 hrs *g* band 12.8 hrs *r* band 7.8 hrs *i* band

Wednesday, February 25, 2015

tot exp time for each 1 deg² field: 17.8 hrs *u* band 12.8 hrs *g* band 12.8 hrs *r* band 7.8 hrs *i* band

Wednesday, February 25, 2015

tot exp time for each 1 deg² field: 17.8 hrs *u* band 12.8 hrs *g* band 12.8 hrs *r* band 7.8 hrs *i* band

ON-OFF observing strategy ~50 exp of 150sec

seeing 0.6 - 1.1

tot exp time for each 1 deg² field: 17.8 hrs *u* band 12.8 hrs *g* band 12.8 hrs *r* band 7.8 hrs *i* band

ON-OFF observing strategy ~50 exp of 150sec

seeing 0.6 - 1.1

Wednesday, February 25, 2015

pipeline developed by A.Grado & L. Limatola at INAF-OAC Naples

- from raw data to fully calibrated images
- reports on data reduction
- background estimate --> for the ON-OFF strategy an average background image is obtained for each night

CTIO Mosaic by Dirsch et al. 2003

Wednesday, February 25, 2015

Surface Photometry: method

• as a first step, every bright sources on all scales (from stars to galaxies and background objects) were accurately masked, thus excluded from the fit

 \bullet estimate the outer radius R_{lim} where the galaxy light blends into the sky level

• the **azimuthally averaged SB profiles**, PA and ellipticity profiles, are obtained by the fit of isophotes in elliptical annuli, up to the R_{lim}

Wednesday, February 25, 2015

Wednesday, February 25, 2015

Wednesday, February 25, 2015

Where galaxies ends? the halo "around" NGC1399

Where galaxies ends? the halo "around" NGC1399

Where galaxies ends? halos of galaxies in the core of the Fornax cluster

Light distribution: NGC1399

Wednesday, February 25, 2015

Light distribution: NGC1399

Light distribution: NGC1399

Wednesday, February 25, 2015

Light distribution: NGC1399

Wednesday, February 25, 2015

Wednesday, February 25, 2015

Light distribution: NGC1404

Light distribution: NGC1404

-20

damage

Wednesday, February 25, 2015

Light distribution: Elliptical galaxies

Light distributic

Light distributic Elliptical galaxies

Light distribution: Elliptical galaxies

Wednesday, February 25, 2015

Wednesday, February 25, 2015

34-30

R1/4 [arcsec]

shallow light profile for R> 4R_e and $27 \leq \mu_g \leq 31 \text{ mag/arcsec}^2$

Wednesday, February 25, 2015

Wednesday, February 25, 2015

Wednesday, February 25, 2015

Wednesday, February 25, 2015
Light distribution: S0 galaxies in the South

Wednesday, February 25, 2015

Wednesday, February 25, 2015

Light distribution: S0 galaxies in the South

Light distribution: S0 galaxies in the South

Wednesday, February 25, 2015

Wednesday, February 25, 2015

Wednesday, February 25, 2015

Wednesday, February 25, 2015

Wednesday, February 25, 2015

Wednesday, February 25, 2015

Wednesday, February 25, 2015

Wednesday, February 25, 2015

Wednesday, February 25, 2015

Wednesday, February 25, 2015

Conclusive Remarks

The large FOV, high efficiency, and spatial resolution of OmegaCAM @ VST allow us

to obtain the largest mosaic of the Fornax Cluster of ~ 3 x 2 deg²

► to map the surface brightness of galaxies to an unprecedent galactocentric distance, i.e. $\mu_g^{lim} \sim 28-32 \text{ mag/arcsec}^2$ at $R \sim 15 R_e$ and the g-i color profiles up to 6-10 R_e

▶ to derive the **light profiles** of NGC1399 up to ~ 150 kpc from the center, and confirm the **change in the slope** at R~5R_e and 28 ≤ µ_g ≤ 31 mag/arcsec²

▶ to found that most of **ETGs** "around" NGC1399 show a **change in the slope** of light profile at $4R_e \leq R \leq 9R_e$ and $27 \leq \mu_g \leq 31 \text{ mag/arcsec}^2$, and SB matches that of NGC1399 for $R \geq 5R_e$

Conclusive Remarks

The large FOV, high efficiency, and spatial resolution of OmegaCAM @ VST allow us

these new and very preliminary results are crucial to unveil the structure of the Fornax Cluster

next steps:

- reduce and study the others 2 VST fields on NE side of NGC1399 to go further out from the galaxy center

- study the extended halo "around" NGC1399 (by making 2D model) and compare it with the predictions from simulations

► to derive the **light profiles** of NGC1399 up to ~ 150 kpc from the center, and confirm the **change in the slope** at R~5R_e and 28 ≤ $\mu_g \le 31 \text{ mag/arcsec}^2$

► to found that most of **ETGs** "around" NGC1399 show a **change in the slope** of light profile at $4R_e \leq R \leq 9R_e$ and $27 \leq \mu_g \leq 31 \text{ mag/arcsec}^2$, and SB matches that of NGC1399 for $R \geq 5R_e$