

Mass and stellar orbital distribution of Early-Type galaxy haloes

Nicola R. Napolitano

INAF – Osservatorio Astronomico di Capodimonte

The stellar halos around galaxies – ESO/Garching, 23-27 February 2015

- simulation predictions
- planetary nebulae (and GCs) as dynamical tracers
- the dispersion-kurtosis Jeans analysis
- mass and anisotropy in galaxy haloes vs. simulations
- testing ΛCDM

Simulation Prediction

DM properties

(Cossisionless) Simulations

DM properties

(Cossisionless) Simulations

Simulation Prediction

DM and Light properties – merging simulations

hydrodynamical re-simulation of DM only simulation

DM and Light properties – merging simulations

hydrodynamical re-simulation of DM only simulation

DM and Light properties – merging simulations

"The accreted component is characterised by radially anisotropic velocity dispersions (Abadi et al.2006; Hilz et al. 2012) because the merging satellites come in on predominantly radial orbits, and so many of the stars."

Dynamical probes of ETGs

Central

dark matter fractions and stellar populations

CALIFA Survey

ALLAS

F

ISC

Dynamical probes of ETGs

V.S

Galaxy Dynamics with discrete tracers in their outskirts

Central dark matter fractions and stellar populations X-rays

PN as dynamical probles of the galaxy outer haloes

PN as dynamical probles of the galaxy outer haloes

Planetary Nebula Spectrograph Galaxy Survey

PN as dynamical probles of the galaxy outer haloes

Planetary Nebula Spectrograph Galaxy Survey

The effect of the orbital anisotropy

Jeans analysis of E systems

2nd moment Jeans Equation (spherical non rotating systems)

$$\frac{\mathrm{d}}{\mathrm{d}r}(j\sigma_r^2) + \frac{2\beta}{r}j\sigma_r^2 = -j\frac{\mathrm{d}\Phi}{\mathrm{d}r} \qquad \beta = 1 - \frac{\sigma_{\theta}^2}{\sigma_r^2}$$

$$j_* \sigma_r^2(\beta = \text{const}) = r^{-2\beta} \int_r^\infty r'^{2\beta} j_* \frac{\mathrm{d}\Phi}{\mathrm{d}r'} \,\mathrm{d}r'$$

$$f(E,L) = f_0(E)L^{-2\beta}$$

where
$$\Phi(r) = -\frac{GM(r)}{r} = -\frac{GM_{star}(r) + M_{DM}(r)}{r}$$

$$\sigma_{\rm los}^2(R) = \frac{2}{I(R)} \int_R^\infty \left(1 - \beta \frac{R^2}{r^2} \right) \frac{j_* \, \sigma_r^2 \, r}{\sqrt{r^2 - R^2}} \, \mathrm{d}r$$

$$M(r) = -\frac{\sigma_r^2 r}{G} \left(\frac{d\ln j_*}{d\ln r} + \frac{d\ln \sigma_r^2}{d\ln r} + 2\beta \right)$$

Jeans analysis of E systems

4th moment Jeans Equation

$$\frac{\mathrm{d}}{\mathrm{d}r}(j_*\overline{v_r^4}) + \frac{2\beta}{r}j_*\overline{v_r^4} + 3j_*\sigma_r^2\frac{\mathrm{d}\Phi}{\mathrm{d}r} = 0$$

$$j_* \overline{v_r^4} = 3r^{-2\beta} \int_r^\infty r'^{2\beta} j_* \sigma_r^2 \frac{\mathrm{d}\Phi}{\mathrm{d}r'} \,\mathrm{d}r'$$

$$\overline{v_{\rm los}^4}(R) = \frac{2}{I(R)} \int_R^\infty \left(1 - 2\beta \frac{R^2}{r^2} + \frac{\beta(1+\beta)}{2} \frac{R^4}{r^4} \right) \frac{j_* \,\overline{v_r^4} \, r}{\sqrt{r^2 - R^2}} \, \mathrm{d}r$$

$$\kappa_{\rm los}(R) = \frac{\overline{v_{\rm los}^4}(R)}{\sigma_{\rm los}^4(R)} - 3$$

Jeans analysis of E systems

4th moment Jeans Equation

$$\frac{\mathrm{d}}{\mathrm{d}r}(j_*\overline{v_r^4}) + \frac{2\beta}{r}j_*\overline{v_r^4} + 3j_*\sigma_r^2\frac{\mathrm{d}\Phi}{\mathrm{d}r} = 0$$

$$j_* \overline{v_r^4} = 3r^{-2\beta} \int_r^\infty r'^{2\beta} j_* \sigma_r^2 \frac{\mathrm{d}\Phi}{\mathrm{d}r'} \,\mathrm{d}r'$$

$$\Sigma \overline{v_{los}^4}(R) = 2 \int_R^\infty g(\beta, r, R) \frac{\nu \overline{v_r^4} r}{\sqrt{r^2 - R^2}} dr$$

Richardson & Fairbairn 2014 **generalize for β(r)** for separable augmented density

$$g(\beta, r, R) = 1 - 2\beta \frac{R^2}{r^2} + \frac{\beta(1+\beta)}{2} \frac{R^4}{r^4} - \frac{R^4}{4r^3} \frac{d\beta}{dr}$$
$$\kappa_{\rm los}(R) = \frac{\overline{v_{\rm los}^4(R)}}{\sigma_{\rm los}^4(R)} - 3$$

$$\beta(r) = \frac{\beta_2 r^c + \beta_1 r_a^c}{r^c + r_a^c}$$

Churazov et a. 2010

De Lorenzi et al. 2008; 2009

NMAGIC: χ² made-to- measure particle method (see Gerhard's talk)

Dearth of dark matter or massive dark halo? Mass-shape-anisotropy degeneracies revealed by NMAGIC dynamical models of the elliptical galaxy NGC 3379

F. De Lorenzi,^{1,2★} O. Gerhard,² L. Coccato,^{2,3} M. Arnaboldi,^{4,5} M. Capaccioli,⁶ N. G. Douglas,³ K. C. Freeman,⁷ K. Kuijken,⁸ M. R. Merrifield,⁹ N. R. Napolitano,⁶ E. Noordermeer,⁹ A. J. Romanowsky^{3,9,10} and V. P. Debattista¹¹

De Lorenzi et al. 2008; 2009

NMAGIC: χ² made-to- measure particle method

Dearth of dark matter or massive dark halo? Mass-shape-anisotropy degeneracies revealed by NMAGIC dynamical models of the elliptical galaxy NGC 3379

F. De Lorenzi,^{1,2★} O. Gerhard,² L. Coccato,^{2,3} M. Arnaboldi,^{4,5} M. Capaccioli,⁶ N. G. Douglas,³ K. C. Freeman,⁷ K. Kuijken,⁸ M. R. Merrifield,⁹ N. R. Napolitano,⁶ E. Noordermeer,⁹ A. J. Romanowsky^{3,9,10} and V. P. Debattista¹¹

The effect of the orbital anisotropy

Use the higher order velocity moments to (somehow) break the mass-anisotropy degeneracy (Merrifield & Kent 1998, Lokas 2002, Lokas & Mamon 2003).

Does this work to break the mass-anisotropy degeneracy?

NGC 4494

NO-DM M/L_B=const=5

Does this work to break the mass-anisotropy degeneracy?

NGC 4494

NFW+ anisotropy $M/L_B=4.3$

 β ~ 0.4-0.5 (radial orbits) in the outer regions

and finally something from the globular clusters

SLUGGS Collaboration (Brodie, Romanowsky, Forbes, Pota, Foster)

- 1) Planetary nebulae (and globular clusters) are excellent probes to investigate the outer galaxy haloes both from the kinematical (V/sigma, angular momentum) and from the **dynamical point of view (mass and anisotropy);**
- 2) The velocity dispersion profiles of (mostly) slow-totator ETG from PNe are statistically overlapping with the ones from recent models of (merging) galaxy formation
- 3) Anisotropy (preliminary) constraints on a sample of 8 ETGs from the Planetary Spectrograph (+2 external) elliptical galaxy survey show a variety of β(r) profile which are generally consistent with a moderate (30-40%) to large (40-70%) fraction of "in situ" star formation, but there are also some highly tangential orbits (fast rotator, merging?).
- 4) Mass distribution: concentrations and virial masses are consistent with the expectations from collisionless simulations with Plank cosmological parameters.