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• Semi analytical models must be calibrated 

• Explore full parameter space

• Each model = a few hours...

• Model emulators

• Prediction for model outputs at any point 
in parameter space! 

• Measure of uncertainty

• Very easy to train

The Astrophysical Journal, 760:112 (17pp), 2012 December 1 Gómez et al.
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Figure 1. Left panel: unconditioned draws from a Gaussian process GP(0, 1)
with a mean of zero and constant unit variance. In our work, the indexing variable
x represents an input parameter of the model, whereas the variable y a desired
observable. Right panel: draws from the same process after conditioning on
seven training points (black circles). The gray band in both panels is a pointwise
95% confidence interval. Note how the uncertainty in the right panel grows
when away from the training points.
(A color version of this figure is available in the online journal.)

points dispersed throughout the parameter space. Once the em-
ulator is trained, it can rapidly give predictions for both model
outputs and an attendant measure of uncertainty about these
outputs at any point in the parameter space. The probability dis-
tribution for the model output at all points in parameter space
is a very useful feature of GP emulators—simpler interpolation
schemes, such as interpolating polynomials, produce an esti-
mate of the model output at a given location in the parameter
space with no indication as to how much this value should be
trusted. Furthermore, numerical implementations of GP emu-
lators are very computationally efficient (producing output in
microseconds rather than minutes), making it feasible to predict
vast numbers of model outputs in a short period of time. This
ability opens many new doors for the analysis of computer codes
which would otherwise require unacceptable amounts of time
(Higdon et al. 2008; Bayarri et al. 2002; B10).

3.1. Gaussian Process Model Emulator

We construct an emulator for a model by conditioning a GP
prior (see Figure 1) on the training data (Chilès & Delfiner
1999; Cressie 1993; Rasmussen & Williams 2005). A GP is
a stochastic process with the property that any finite set of
samples drawn at different points of its domain will have a
multivariate-normal (MVN) distribution. Samples drawn from
a stochastic process will be functions indexed by a continuous
variable (such as a position, time or, in our case, a parameter of
the model) as opposed to a collection of values as generated by,
e.g., a normally distributed random variable. A GP is completely
specified in terms of a mean and covariance, both of which can
be functions of the indexing variable. The unconditioned draws
(solid lines) shown in the left panel of Figure 1 are smooth
functions over the domain space labeled x. If enough samples are
drawn from the process, then the average of the resulting curves
at each point would converge to zero. A posterior distribution
function can be obtained by conditioning this process on the
training points obtained from the model. This forces samples
drawn from the process to always pass through the training
points, as shown in the right-hand panel of Figure 1. Repeated
draws from the conditioned posterior distribution would on
average follow the underlying curve with some variation, shown
by the gray confidence regions. These confidence bubbles grow
away from the training points where the interpolation is least

certain, and contract to zero at the training points where the
interpolation is absolutely certain. The posterior distribution
can be evaluated to give a mean and variance at any point in the
parameter space. We may interpret the mean of the emulator as
the predicted value at a point, the variance at this point gives
an indication of how close the mean is to the true value of the
model. Again, we emphasize that simpler interpolation methods,
such as interpolating polynomials or splines, generally do not
provide any measure of the accuracy of the method at a given
point in parameter space.

To construct an emulator, we need to fully specify our GP by
choosing a prior mean and a form for the covariance function.
The model parameter space is taken to be p-dimensional. We
model the prior mean by linear regression with a desired basis
function space h(x); we use h(x) = {1}. We specify a power
exponential form for the covariance function with power α ! 2,
which ensures smoothness of the GP draws,

c(xi , xj ) = θ0 exp

(

−1
2

p∑

k=1

(
xk

i − xk
j

θ k

)α)

+ δijθN . (3)

Here, θ0 is the overall variance, the θ k set characteristic length
scales in each dimension in the parameter space, and θN is a
small term, usually called a nugget, added to ensure numerical
convergence or to model some measurement error in the code
output. The shape of the covariance function determines how
the correlations between pairs of outputs vary as the distance
between them in the parameter space increases. The scales in
the covariance function θ k are estimated from the data using
maximum likelihood methods (Rasmussen & Williams 2005).
In Figure 2, we demonstrate their influence on an artificial data
set. The linear regression model handles large-scale trends of
the model under study, and the GP covariance structure captures
the residual variations.

Given a set of n design points D = {x1, . . . , xn} in a
p-dimensional parameter space, and the corresponding set of
n training values representing the model output at the design
locations Y = {y1, . . . , yn}, the posterior distribution defining
our emulator is

P(x, θ ) ∼ GP(m̂(x, θ ), Σ̂(x, θ )),

for conditional mean m̂ and covariance Σ̂.

m̂(x) = h(x)T β̂ + kT (x)C−1(Y − Hβ̂),

Σ̂(xi , xj ) = c(xi , xj ) + kT (xi)C−1k(xj ) + Γ(xi, xj ),
Cij = c(xi , xj ) (4)

Γ(xi, xj ) = (h(xi)T − kT (xi)C−1H)T (HT C−1H)−1

× (h(xj)T − kT (xj)C−1H),

k(x)T = (c(x1, x), . . . , c(xn, x)), (5)

where m̂(x) is the posterior mean at x, Σ̂(xi , xj ) is the posterior
covariance between points xi and xj , C is the n × n covariance
matrix of the design D, β̂ is the maximum likelihood estimated
regression coefficients, h is the basis of regression functions,
and H is the matrix of these functions evaluated at the training
points.

The elements of the vector k(x) are the covariance of an output
at x and each element of the training set. It is through this vector
k(x) that the emulator “feels out” how correlated an output at
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Figure 3. ANOVA decomposition (see Section 3.2) obtained from a seven-
dimensional Gaussian process model emulator of ChemTreeN, where each di-
mension corresponds to a different input variable. The results were obtained
using the simulation labeled MW1. The different columns correspond to differ-
ent mock observables, whereas rows are associated with either main effects or
interactions. From left to right, the columns correspond to different bins of the
luminosity function. We only consider up to two-variable interaction effects.
Note that, for simplicity, not all interaction effects are shown. The different
colors indicate the percentage of the total variance that can be explained by
the corresponding effect. The total variance associated with each mock observ-
able (column) has been normalized to one. This graphical representation of
the ANOVA decomposition allows us to quickly identify what input parameters
are more important in explaining the variability observed on each observable.
(A color version of this figure is available in the online journal.)

whereas the one associated with zr increases. The transition
takes place at around Mv ≈ −11.5. At this Mv , the interaction
effect zr:fbary becomes important, indicating a coupling of both
input parameters. This coupling can be clearly observed on the
top right panel of Figure 2.

From Figure 3 we can infer that observables extracted
from the luminosity function could only be used to constrain
parameters such as fbary, zr , and, to a much lesser extent, ε∗.
In our models, the remaining four parameters cannot account
for significant variations of the cumulative number of galaxies
at any magnitude bin—or, taken another way, the observables
we have chosen provide no meaningful constraints on these
particular parameters. Thus, a different set of observables is
required if we wish to constrain any of the remaining model
parameters.

In Figure 4 we show the main effects computed for mock
observables extracted from the metallicity function. The first
panel shows that the cumulative number of satellite galaxies
with 〈[Fe/H]〉 ! −1.1 strongly depends on the escape factor

-2.2-1.8-1.4-1.1

zr

fesc

fbary

∗

mII
Fe

fIa

sn

zr :fesc

zr :fbary

zr : ∗

zr :mII
Fe

zr :fIa

zr : sn

fesc :fbary

fesc : ∗

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5. As in Figure 3, for four bins of the cumulative number of satellite
galaxies as a function of mean metallicity, 〈[Fe/H]〉.
(A color version of this figure is available in the online journal.)

of metals, fesc. There is also a much weaker dependence on
the value assigned to the SN energy coupling, εSN, and to the
redshift of reionization, zr . In a similar fashion to what was
observed for the luminosity function observables, as we move
toward lower values of 〈[Fe/H]〉, the number of satellite galaxies
rapidly increases and zr becomes the dominant parameter.
Figure 5 shows the corresponding ANOVA decomposition.
We can clearly observe how the variance on the cumulative
number of metal-rich satellite galaxies (defined here to be
〈[Fe/H]〉 ! −1.1) is closely associated with variations of fesc
and only slightly on εsn, whereas the cumulative number of
satellites with 〈[Fe/H]〉 ! −2.2 is dominated by the parameter
zr . The remaining parameters have a negligible effect on the
cumulative number of galaxies as a function of 〈[Fe/H]〉.
Interestingly, we observe a strong coupling between zr and fesc
at almost all values of 〈[Fe/H]〉. This coupling can be seen in
Figure 4.
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Figure 4. As in Figure 2, now for mock observables obtained from the cumulative number of satellite galaxies as a function of mean metallicity, 〈[Fe/H]〉.
(A color version of this figure is available in the online journal.)
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Figure 9. As in Figure 7, when values of the corresponding metallicity functions are considered as mock observables.
(A color version of this figure is available in the online journal.)

Figure 10 shows, with black stars, the luminosity function
of the Milky Way’s satellite galaxies (McConnachie 2012). For
comparison, the color-coded dashed lines show the luminosity
function of the models with the fiducial parameters. These mod-
els were obtained after coupling ChemTreeN with the four dark-
matter-only cosmological simulations MWi (with i = 1, 2, 3,
and 4) and fixing the input parameters at the fiducial values listed
in Table 2. The four models show significant deviations from
the data. It is thus likely that for each Milky Way dark matter
halo model there exists a small volume of input parameter space
within which a better fit to the observed luminosity function can
be obtained. To search for this volume, we employ the DRAM
sampling technique previously described. We train model emu-
lators using four different training sets. The sets are the results
of coupling ChemTreeN to the four dark-matter-only cosmolog-
ical simulations of Milky-Way-size galaxies. The same design
for each simulation, consisting of n = 500 points, was used.
For each set of model emulators, trained on a different MWi,
we obtained a different joint implausibility function Ji(x) (see
Equation (6)). These Ji(x) are the result of comparing the out-
puts of the model emulators to the real observable data. We use
the Ji(x) to construct four different likelihood functions Li(x)
(see Equation (14)). Figure 11 shows the results of the DRAM
sampling. The left panel shows contours of the projected den-
sity of DRAM chain points in (zr, fbary) space. The different
colored contours show the results obtained with the four differ-
ent Li(x). Starting from the densest point of each final distribu-
tion, xi

hd, the different contour levels enclose 1%, 5%, and 10%
of corresponding DRAM chain points. The color-coded dot in-
dicates the location of xi

hd. Note that strong constraints on the

Table 3
Model Parameter Extracted from the Highest-density Peak

of the Corresponding DRAM-chain’s Posterior Density

Name zr fesc fbary ε∗ εSN M40
a

MW1 10.3 57.7 0.021 0.4 × 10−10 0.00165 0.57
MW2 9.6 27.0 0.021 0.5 × 10−10 0.00304 0.95
MW3 10.7 19.1 0.168 17 × 10−10 0.00255 20.9
MW4 10.3 27.0 0.048 0.7 × 10−10 0.00211 1.88

Note. a Masses are listed in 108 M$.

parameters (zr, fbary) are obtained for the four MWi. Let us recall
that the satellite luminosity function is most sensitive to this pair
of input parameters. Interestingly, except for the model MW4,
the locations of xi

hd are significantly off from the fiducial values,
especially in the direction of fbary. The values of the parameters
associated with xi

hd are listed in Table 3. The most extreme case
is given by halo MW3, where the most plausible value of fbary
is approximately four times larger than the fiducial value. Note
that, as shown in the top panel of Figure 10, when compared
with the Milky Way luminosity function this model (obtained
with the fiducial parameters) presents a significant deficit of
bright satellites. On the other hand, MW1’s model shows an
excess of satellites at all magnitudes. Note that the most plau-
sible value of fbary obtained by the DRAM sampling in this
case is approximately two times lower than the fiducial value.
To explore whether the location of xi

hd depends on the number
of points used in the DRAM sampling, we divided the final
chains into five different subchains as described in Section 5.
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Expose and visualize the nonlinear coupling between the 
parameterization of the different physical processes

Analysis of variance decomposition

Statistical tools: publicly available
https://madai-public.cs.unc.edu/ 

If you are interested, 
please come and talk to me!
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