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6 T R I A X I A L DA R K M AT T E R H A L O E S

In CDM cosmologies DM haloes are not spherical. Furthermore,

simulations suggest that their shape should vary with radius, both

equidensity and equipotential surfaces being rounder (on average)

at larger radii. Several studies have tried to constrain the shape of

the Milky Way’s halo by analysing the properties of observed tidal

streams like that of the Sagittarius dwarf galaxy (Ibata et al. 2001;

Helmi 2004a,b; Johnston, Law & Majewski 2005; Fellhauer et al.

2006), but there is still an ongoing controversy what the shape ac-

tually looks like. Recently, Hayashi, Navarro & Springel (2007)

analysed the radial variation in potential shape of simulated haloes

that might correspond to that of the Milky Way. Although there

is substantial object-to-object scatter, on average they found a rel-

atively rapid transition from aspherical to almost spherical which

occurs near the scale radius rs of the best-fitting NFW profile. They

provide a simple fitting formula for this mean behaviour,
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for the principal axial ratios b/a and c/a. [Note that they actually

provide two different sets of fitting parameters for equation (34) de-

pending on the principal axial ratios.] They also propose a modified

NFW potential that takes into account the variation in shape, but this

potential is not very convenient because it is not straightforward to

derive the corresponding equations of motion. The examples given

above show that potential shape can have a substantial effect on

stream-density evolution, so it is interesting to see how strong such

effects can be in a realistic model.

To analyse this we have built a simple extension of the NFW

model that qualitatively reproduces the shape variation found by

Hayashi et al. (2007) but which has simple equations of motion

that can easily be implemented in DAMAFLOW. (For another similar

model, see Adams et al. (2007).)

We model the variable shape of the NFW halo by replacing the

Euclidean radius in the formula for the potential of a spherical NFW

halo by a more general ‘radius’ r̃ given by

r̃ =
(ra + r ) rE

(ra + rE)
. (35)

Here ra is a transition scale where the potential shape changes

from ellipsoidal to near spherical and rE is an ellipsoidal ‘radius’

given by
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where we require a2 + b2 + c2 = 3. Thus for r " ra r̃ ∼= rE and

for r $ ra r̃ ∼= r . We then take the potential to be #(x, y, z) =
#NFW(r̃ (x, y, z)) which reproduces the general behaviour found by

Hayashi et al. (2007) with a smooth transition around ra.

For a specific example, we have chosen the transition scale to be

the scale radius of the NFW profile and have taken values for a,

b and c that give central principal axial ratios that are comparable

to those found by Hayashi et al.: b/a = 0.78 and c/a = 0.72. Our

choice is a = 1.18, b = 0.92, c = 0.85. For the NFW profile we used

a concentration of r200/rs = 7.0. We checked Poisson’s equation for

this potential to ensure that it implies a positive density everywhere.

The check was performed by DAMAFLOW evaluating the negative

of the trace of the tidal field on a fine 3D grid. This is just the

Laplacian of the potential and so proportional to the corresponding

density. Since the density field is continuous, positive density values

on the grid should guarantee a positive density everywhere.
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Figure 10. Isopotentials for the outer and inner parts of one of our triaxial

NFW haloes. It is obvious that the halo becomes rounder as one moves

outwards. In this case the transition scale ra was chosen to be equal to the

scale radius rs of the NFW profile.

Fig. 10 shows isopotentials in the outer and inner parts of the

halo. All distances are expressed in terms of the scale radius rs of

the NFW profile. The transition from spherical to aspherical can

clearly be seen as the centre is approached. Fig. 11 compares the

radial variation in axial ratios in our model and in the simulations

of Hayashi et al. (2007). The simulation axial ratios are calculated

with equation (34) using the average values for α, γ , rα found in

Hayashi et al. (2007). The lines for our model are calculated as

follows. For a given value of r̃ we computed the intersections of

the corresponding isocontour with the x-, y- and z-axes. So we get

three values a′ ′, b′ ′, c′ ′. To look for their variation over distance

we define the mean distance r ′′ =
√

(a′′)2 + (b′′)2 + (c′′)2. This is

essentially the same procedure which Hayashi et al. (2007) applied

when fitting the isopotentials of their simulated haloes. Thus we

can compare directly with their results as in Fig. 11. The qualitative

behaviour of our model is very similar to that of the simulations.

It is not necessary to demand an exact fit since the scatter between

different haloes studied by Hayashi et al. (2007) is quite large.

We implemented this potential into DAMAFLOW and looked at four

different orbits with the following apocentre/pericentre distances

in units of rs: 8.9/6.1, 20/5.9, 2.2/0.5, 1.2/0.4. We compared the

stream-densities predicted for our triaxial model to those predicted
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Table 1. Main properties of the five Aquarius haloes at z = 0 from Springel et al. (2008b). The first column
labels the simulation. From left to right, the columns give the virial radius of the DM halo, r200; the virial
mass, M200; the number of particles within r200, N200; the particle mass, mp; the concentration parameter,
cNFW; the intermediate to major, b/a and the minor to major, c/a, principal axial ratios computed using
DM particles located within 6 to 12 kpc; the total stellar halo mass, M∗ (our stellar halo masses also
includes the mass assigned to the bulge component in Cooper et al. 2010) and the half–light radius from
Cooper et al. (2010), r1/2.
Masses are in M"; distances in kpc and velocities in km s−1.

Name r200 M200 N200 mp cNFW b/a c/a M∗ r1/2
[1012] [106] [103] [108]

Aq–A2 245.88 1.842 135 13.7 16.19 0.65 0.53 3.8 20
Aq–B2 187.7 0.8194 127 6.4 9.72 0.46 0.39 5.6 2.3
Aq–C2 242.82 1.774 127 14.0 15.21 0.55 0.46 3.9 53
Aq–D2 242.85 1.774 127 14.0 9.37 0.67 0.58 11.1 26
Aq–E2 212.28 1.185 124 9.6 8.26 0.67 0.46 18.5 1.0

Vogelsberger et al. (2008) presented a triaxial extension
of this profile that takes into account triaxiality and radial
variation in shape. The associated potential, ΦTRI, can be
described by

ΦTRI = −A
rp

ln

(

1 +
rp
rs

)

, (1)

where A is a constant defined as

A =
GM200

ln (1 + cNFW)− cNFW/ (1 + cNFW)
,

with G the gravitational constant, M200 the virial mass of
the DM halo and cNFW the concentration parameter; rs =
r200/cNFW is a scale radius with r200 the virial radius. The
triaxiality of this potential is introduced through rp,

rp =
(rs + r)re
rs + re

,

where r is the usual galactocentric distance and re an ellip-
soidal radius defined as
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√
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.

The quantities b/a and c/a represent the intermediate to
major and the minor to major principal axial ratios and are
defined such that a2 + b2 + c2 = 3. In all simulations, the
ratios and directions of the principal axes were computed
using DM particles located within 6 to 12 kpc. Their values
are listed in Table 1.

Note that, in this approximation used to represent the
underlying potential of DM haloes, the potential shape
changes from ellipsoidal to near spherical at the scale ra-
dius, rs. Thus, for r " rs, rp ! re and for r # rs, rp ! r
(Vogelsberger et al. 2008).

The potential ΦTRI admits, for rp < rs the power series
expansion

ΦTRI = −A
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so it is analytic everywhere, and the condition rp < rs im-
plies that r, re < rs.

Under the above assumption, rp/rs could be approxi-
mated, up to r2e/r
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,

retaining terms up to rp/rs in (2) and neglecting a constant
term, the potential takes the form
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This approximation will be used in Section 4.2 when
discussing diffusion.

2.3 Cosmological motivated initial conditions

To investigate the efficiency of chaotic mixing on halo stars
in the vicinity of the Sun we first need to model their distri-
bution in phase space. Rather than stochastically sampling
the phase space distribution associated with the potential
presented in Section 2.2, Eq. (1), we select from each halo
the stellar particles within spheres centred at 8 kpc from
the corresponding galactic centre. Following Gómez et al.
(2010), we choose for the spheres a radius of 2.5 kpc. This ra-
dius approximately corresponds to the distance within which
the astrometric satellite Gaia will be able to measure with
high accuracy positions and velocities of an extremely large
number of stars. As the final configuration of the five host
DM haloes is strongly triaxial, we have rotated each halo to
its set of principal axes and placed the corresponding local
spheres along the direction of the major axis. This allows
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discussing diffusion.

2.3 Cosmological motivated initial conditions

To investigate the efficiency of chaotic mixing on halo stars
in the vicinity of the Sun we first need to model their distri-
bution in phase space. Rather than stochastically sampling
the phase space distribution associated with the potential
presented in Section 2.2, Eq. (1), we select from each halo
the stellar particles within spheres centred at 8 kpc from
the corresponding galactic centre. Following Gómez et al.
(2010), we choose for the spheres a radius of 2.5 kpc. This ra-
dius approximately corresponds to the distance within which
the astrometric satellite Gaia will be able to measure with
high accuracy positions and velocities of an extremely large
number of stars. As the final configuration of the five host
DM haloes is strongly triaxial, we have rotated each halo to
its set of principal axes and placed the corresponding local
spheres along the direction of the major axis. This allows
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Figure 5. Time evolution of the OFLI for 1000 test particle initial conditions sampled around a guiding particle on a regular orbit. The
radius of the initial sphere is indicated. Notice the logarithmic scale. The bigger the sphere around the guiding particle, the more diverse
the behaviours of the neighbouring particles.

the following results do not depend strongly on our specific
choice of stellar particles.

As before, we distribute ensembles of test particles
around each guiding particle. The test particles are initially
distributed as explained in Section 4.1.1, with σx = 0.2 pc
and σv = 1 km/s. However, to accurately track the time
evolution of the local density around both guiding particles
for periods of 10 Gyr, a larger number of test particles, 104,
is considered for each ensemble. Two different time intervals,
separated by several Hubble times (∼ 113 Gyr), are consid-
ered. The integration timestep is 0.1 Myr. As expected from
their chaos onset times, during the first time interval the
sticky orbit behaves like a regular orbit while the chaotic
orbit shows its true nature. During the second time interval
the sticky orbit behaves like a chaotic orbit. To estimate the
local density at every timestep, we count the number of test
particles within a radius of 0.1 kpc around the guiding parti-
cle, and also discard from further consideration any particles
beyond a radius of 2 kpc. The number of test particles within
the 0.1 kpc sphere is then normalised by the initial number
of test particles. We call this quantity the normalised num-
ber of neighbouring particles: Ni. Here i = S,C refers to the
normalised densities associated with the sticky and chaotic
orbits, respectively.

On the top panel of Fig. 6 we present, with dark grey
dashed and green solid lines, the time evolution of NS for
both time intervals (labelling the first 10 Gyr as interval 1
and the second 10 Gyr time interval as number 2). On the
same panel we also present, with a red solid line, the time
evolution of NC for the first 10 Gyr time interval. It is clear
from this panel that the local density around the sticky orbit
decreases in time significantly more slowly when the guid-
ing particle’s orbit is approximately regular. Notice that, in
this regime, we are able to track the evolution of the local
density for the full 10 Gyr period of integration. Conversely,
in the chaotic regime, the number of neighbouring parti-
cles within 0.1 kpc, that have never been further than 2
kpc, becomes insufficient to track the local density after ∼ 6
Gyr. Notice that the sticky particle and the chaotic parti-
cle show a similar evolution of their local densities during
the chaotic regime. The more rapid decay of NC reflects the
more chaotic nature of this orbit. On the bottom panel of
Fig. 6 we show that a power law function describes well the
time evolution of the local density around the sticky particle
during the first 10 Gyr time interval; specifically NS ∝ t−2.3.
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Figure 6. Top panel: time evolution of the normalised number
of neighbouring particles for the sticky orbit, NS, over two non–
consecutive 10 Gyr time intervals. The first interval (labelled 1)
is taken when the guiding particle moves on a regular orbit and
the second interval (labelled 2) is taken when the guiding particle
moves on a chaotic orbit. We also show the time evolution of
the normalised number of neighbouring particles for the chaotic
orbit, NC, over the first time interval. Bottom panel: a power law
fit for NS and an exponential fit for NC for the first interval only.
Notice the logarithmic scale. The local density of stellar streams
decreases with a power law function along a regular orbit and at
an exponential rate along a chaotic orbit.
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Table 2. Initial conditions and binding energies for our examples of regular, sticky and chaotic orbits.
Distances are in kpc, velocities in km s−1 and binding energies in km2 s−2.

Type of orbit x y z vx vy vz E

Regular 8.219 −0.652 −2.203 −5.795× 10−3 102.95 −4.745 −217691.706
Sticky 5.865 0.263 −0.346 239.350 333.547 57.208 −152469.329
Chaotic 5.731 0.531 0.443 6.029 −0.366 23.691 −238489.404
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Figure 1. Examples of regular orbits (left panels), sticky orbits (middle panels) and chaotic orbits (right panels) in the triaxial extension
of the NFW model, for different time intervals. The fact that different volumes are occupied by the orbits in different time intervals (see
the middle and right panels) is an indication of chaotic behaviour.

case, all three orbits have been integrated using a time–step
of 1 Myr. Notice the linear evolution of the indicator for
regular orbits and the exponential growth corresponding to
sticky and chaotic orbits. As expected from our previous
discussion, for the sticky orbit, it takes the OFLI ∼ 100 Gyr
to start growing exponentially, time at which the chaotic
behaviour of this particle is revealed. Instead, for the chaotic
orbit, it only takes the OFLI a few Gyr to start showing an
exponential growth.

4 THE ACTUAL RELEVANCE OF CHAOS:

SOLAR NEIGHBOURHOOD–LIKE

VOLUMES

In order to characterise the impact of chaotic mixing on
the phase space distribution of the Solar Neighbourhood, in
this section we examine two central points: i) the distribu-
tion of chaos onset times for stellar particles within Solar
Neighbourhood–like volumes and ii) the rate of diffusion
due to chaotic mixing, a mechanism that can lead to large
variations of the integrals of motion. Our goal is to explore
whether chaotic mixing can be strong enough to erase sig-
natures of merger events in the neighbourhood of the Sun.

To tackle (i) we select particles from the five Aquar-
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Figure 2. Time evolution of the OFLI for the three orbits intro-
duced in Fig. 1. Notice the logarithmic scale on both axes. The
exponential growth of the indicator for chaotic motion is clearly
observed for the chaotic and sticky orbits.

ius stellar haloes in Solar Neighbourhood–like volumes (see
Section 2.3). We then quantify the fraction of particles on
regular, sticky and chaotic orbits. We do this by means of
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Regular: 
Local stream density: power-law
Integral of motion: Conserved

Chaotic:
Local stream density: exponential
Integral of motion: Diffusion

Very hard to identify streams

Sticky?

Chaos onset time

Local stream density

Solar Neighborhood-like spheres (five halos):

≤ 20% orbits show chaotic behavior 
within 10 Gyr

~ 30% are perfectly regular

The remaining 50% → sticky orbits
(Chaos onset times ≫ 10 Gyr)

For those chaotic orbits, diffusion does
not have enough time to operate
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