Characterizing the relevance of chaotic mixing in the Solar Neighborhood Nicolas Maffione (FCAGLP), Facundo A. Gómez (MPA), et al.

Milky Way	dark matt	er halo	potential:
Cuspy and	strongly t	riaxial!	

Name	M_{200} [10 ¹²]	$c_{\rm NFW}$	b/a	c/a
Aq–A2	1.842	16.19	0.65	0.53
Aq–B2	0.8194	9.72	0.46	0.39
Aq–C2	1.774	15.21	0.55	0.46
Aq–D2	1.774	9.37	0.67	0.58
Aq–E2	1.185	8.26	0.67	0.46

Regular orbit: 0-50 [Gyr]

Regular Sticky Chaotic

Regular orbit: 950-1000 [Gyr]

Sticky orbit: 0-110 [Gyr]

Sticky orbit: 890-1000 [Gyr]

Z [kpc] 4 2

Chaotic orbit: 0-5 [Gyr]

Chaotic orbit: 5-10 [Gyr]

Regular:

Local stream density: **power-law** Integral of motion: **Conserved**

Chaotic:

Local stream density: **exponential** Integral of motion: **Diffusion**

Very hard to identify streams

Sticky?

Solar Neighborhood-like spheres (five halos):

Solution 20% orbits show chaotic behavior within 10 Gyr

~ 30% are perfectly regular

The remaining 50% → sticky orbits (Chaos onset times ≫ 10 Gyr)

For those chaotic orbits, diffusion does not have enough time to operate

