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Testing the hierarchical paradigm. |. Mergers

* Stellar halo contains direct imprints of
merger history

* Tidal streams/substructures

We need to find them and understand
(model) their behaviour

*  Were mergers important for Milky Way?
* How often and when did they happen!?

*  What do they tell us about the building
blocks? What were their properties?

t=16yr i i
t=36yr t =45 Gyr Y







Testing the hierarchical paradigm. |l
s this “picture” correct!

* Are galaxies like the Milky Way embedded in dark matter halos like those
predicted by the cosmological model?



~ Are galaxies like the Mllky Way embedded in dark matter halos like those
predicted by the cosmological model’

* How much dark matter is there?
— how is it dlstrlbuted7 Shape, denS|ty profile, granularlty, time-evolution

— what 'is'the dark matter? y



" Gaia’s horizon

(I km/s proper motions)

. Galactic Centre
Sun

Horizon until now
for positions and
motions

Gaia will measure positions and motions of stars for 107 stars (10,000 x larger than

predecessor); over a volume 100,000 larger; 1,000 more precisely =» transformational




Observed sky [obs/deg?]
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*Simultaneous astrometry, . g
photometry, spectroscopy i
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*Complete to G = 20 (V =20-22), ~ '\ -
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G = 16 for spectroscopy S\ i
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*Whole sky already observed!

-90 50,000

*First data release in mid-2016 up to 21 million objects/deg?
(positions + G magnitude) By Jan. 2015, 16 billion photom/astrom transits,

*DR?2 in Jan 2017: full phase-space |.6 billion spectroscopic

Performance predictions for G2V star

V magnitude  Astrometry Photometry Spectroscopy
(parallax) (BP/RP integrated) (radial velocity)
3to 12 5-14 pas 4 mmag
3t012.3 1 kms™!
15 24 pas 4 mmag
15.2 15 km s™!
20 540 pas 60 (RP) — 80 (BP) mmag Cou rtesy of
Calculations by: Airbus DS, D. Katz, C. Jordi, L. Lindegren, J. de Bruijne Anthon)’
Brown &
Up-to-date information always at: Gaia/DPAC

http://www.cosmos.esa.int/web/gaia/science-performance




“Image of the week” http://www.cosmos.esa.int/web/gaia/

Photometry RR Lyrae in the LMC

G mag

G mag

18.5 F

19

19.5

19

0 0.5 1 1.5

Phase (Period=0.5431423 d)

81 T ]
K B ]
~ Eix}ﬂiié jiixi ;

A ';%; 1
0 0.5 1 1.5
Phase (Period=0.6069422 d)
T L
e
s,
[,
L %
0 0.5 1 1.5

Phase (Period=0.6020081 d)

(0]

0.5

1

1.5

Phase (Period=0.5431423 d)

0]

0.5 1

1.5

Phase (Period=0.6069422 d)

0
Phase (Period=0.6020081 d)

0.5

1

1.5

nts [normalised]

0.025

0.02

0.015
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Back to streams



Streams in physical space

A single object can give
rise to multiple, spatially
crossing streams

We can speak of leading
or trailing streams if
mapping is close to
continuous (connect
the pieces)

A priori we might not
know if two structures/
streams in space have
the same parent

Carlin et al. 201 |



Streams in action-angle

Action-angle evolution is simple:

0=0,+(0rt

J=Jo

streams spread out in angle

actions are adiabatic invariants

Behaviour is very simple in

action-angle space

difficulty is to find actions/angles for any
non-spherical potential (Bovy 2014;
Sanders & Binney 2013, 2014)

Caveat: assume stars feel only host after
released

Stars from same object should be
maximally clustered in action-space in

right potential

(talk by Sanderson)

even if potential changed with time
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How do we understand the evolution?

Principle:

Gaussian f(mo(x(,,vo)) Gaussian f(w(dg.J 0))

Ow0

Follow df evolution in action-angle space

A0=HAJ 1

Predict properties in observable space:

* Perform local linear coordinate
transformation to (x,v)

* Determine the width, extent and
velocity dispersion along a stream as f(t)

(6661) 241YM 9 1W|2H



Evolution of streams in a spherical potential

Helmi & Gomez 2007

* Stream elongated along direction of motion, and thicker in plane of motion
*  Width of stream normal to plane of motion is ~ constant (spherical pot.)
* Velocity dispersion decreases as |/t (conservation of phase-space density)



Streams in cosmological simulations?
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Gomez et al. (2014)

*Cosmological simulations show similar behaving streams

*No strong chaos, power law rather than exponential divergence of orbits
(poster Maffione)



Inner/nearby stellar halo in Aquarius

* Few objects contribute here: 75% of
stars near Sun from 3-5 parents

Number of streams

* Memory in kinematics (despite “chaotic”
build-up)
— ~ 400 streams crossing Solar
neighbourhood

— Should be identifiable with Gaia

b10T e 39 Zowoo



Streams and the potential

Computation of angles, actions and frequencies depends on g £ =427Gyr
potential assumed '

In true potential, in
angle and in frequency space (Sanders & Binney 2014)
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Streams and time-evolution

*  What are the signatures of time-evolution? Can it be measured?

* Model growth of a spherical halo:
— inside out, cosmological mass-growth M ~ exp(-a, z)
— doubles its mass with orbits considered

— numerical simulations and analytic formalism based on A-A variables

* Different progenitors + different orbits

apo = 50, peri = 5 (kpc)

apo = 60, peri = 30 (kpc)
apo = 70, peri = 15 (kpc)
apo = 80, peri = 50 (kpc)

apo = 90, peri = 25 (kpc)

Buist & Helmi, 2015



Non-evolving Evolving Non-evolving Non-evolving Evolving Non-evolving
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Precession in orbital plane differs and misalignment is seen, +10deg

To see impact of time evolution: need long streams, preferably on radial orbits




Analysis in action-angle space

With time-dependence one cannot _OH D oW
use original A-A variables T 00, _‘7@_01,%(1 , @),

[ ' ici ' , )H’ ) oW .
Actions are adlabaFlc invariants L gwral g6
(depending on orbit) oJ; dJ; da

Frequencies and angles are not ‘ | )
(6,-} ~ Qi(J, @) + O(@, @).

Angles: r
0i(1) ~ 9i(0)+f Q;(J, a(n)dt,
0

With present-day potential, compute
angles and frequencies

AG,  [AQ.dt  AQ,

N6, [AQudl 7 AQ,

Differences are small, ~ 0.01 — 0.025 depending on growth rate



Measurable!?

Orbit O1 Orbit 02 Orvbit 03 Q_rbit O_4 Orrbit 05 O_rbit O_6 Orbit O7 Orbit O8
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* Error convolution in observable space: €, ~ [0 km/s, €, ~ € , ~ |%

* Streams behave well, slope difference is still measurable for most experiments
— frequency space more strongly affected by errors

— PASS if difference between original and error-convolved slope < 0.005



Measurable with more realistic errors?
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More streams can be used and growth can be measured



Summary

Dynamics of stellar streams best understood using action-angle

— Streams on straightlines in angle and in frequency space if true potential
— Constrain Galactic potential parameters
— Time-evolution imprinted in differences in straightlines slopes

— Appear to be measurable in foreseable feature

What'’s next
* Finding hundreds of streams predicted by LCDM in Gaia

* Formation of the stellar halo (in-situ vs accreted, timescales, progenitors)
* Better understanding of signatures of subhalos on streams as ultimate test of LCDM



~ Thank you! -



