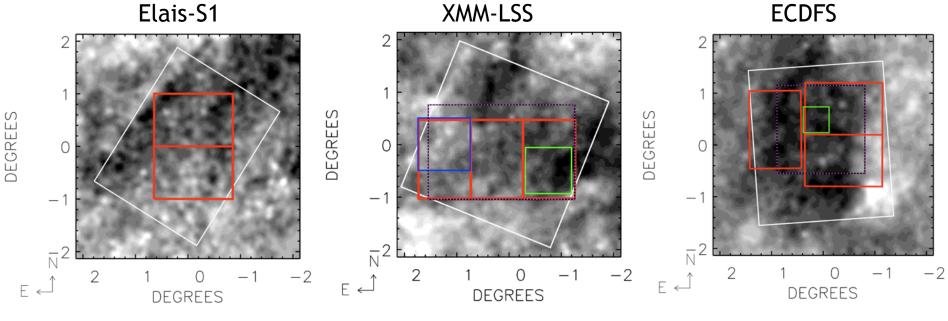


• Galaxy formation/evolution over the **epoch of activity** (1<z<4)

- Statistical studies of the most massive galaxies at z > 5
- The evolution of clusters from the formation epoch to now
- The **peak of accretion activity**: studying AGN in detail
- The first accreting black holes at z > 6.5
- Near-infrared observations of Type la supernovae

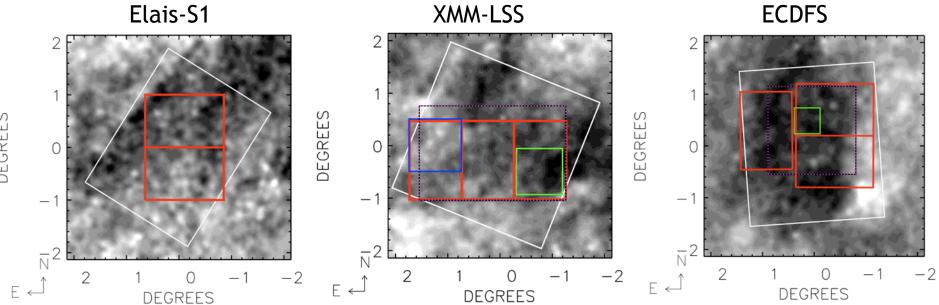


- Galaxy formation/evolution over the **epoch of activity** (1<z<4)
- Statistical studies of the most massive galaxies at z > 5
- The evolution of clusters from the formation epoch to now
- The **peak of accretion activity**: studying AGN in detail
- The first accreting black holes at z > 6.5

• Near-infrared observations of Type la supernovae

1	UltraVISTA	~ ~ 1 deg ² mAB ~ 26
	VIDEO	12 deg ² mAB ~ 24.5
	VIKING	1500 deg ² mAB ~ 22

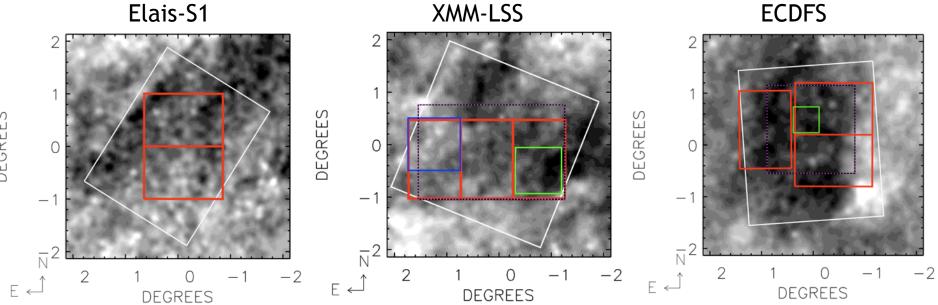
Elais-S1


 $VIDEO = 3 deg^2$

4.5 deg² **UKIDSS UDS CFHT Legacy Survey D1**

4.5 deg²

Elais-S1


DEGREES

Filter	Time (per source)	Time (full survey)	5σ ΑΒ	5σ Vega	UKIDSS- DXS	Seeing	Moon
Ζ	17.5 hours	456 hours	25.7	25.2	-	0.8	D
Y	6.7 hours	175 hours	24.6	24.0	-	0.8	G
J	8.0 hours	209 hours	24.5	23.7	22.3	0.8	G
Н	8.0 hours	221 hours	24.0	22.7	22	0.8	В
K _s	6.7 hours	180 hours	23.5	21.7	20.8	0.8	В

Elais-S1

DEGREES

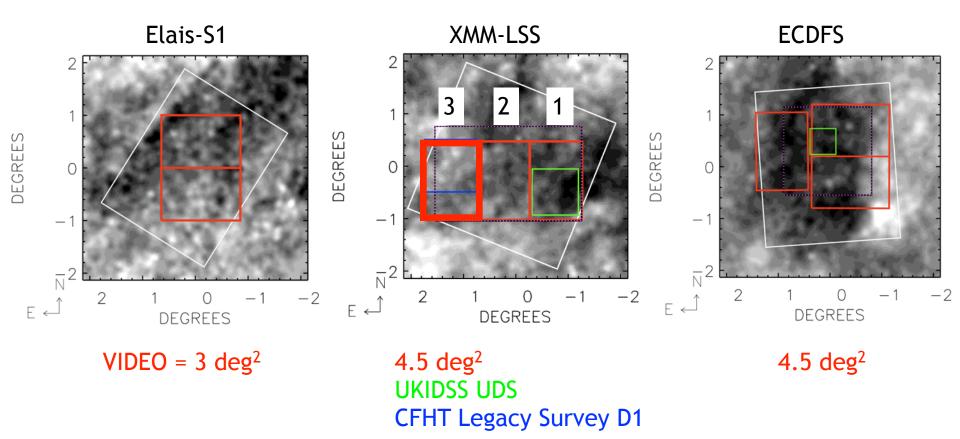
	Time (per source)	Time (full survey)	5 σ AB	5σ Vega	UKIDSS- DXS	Seeing	Moon
Z	17.5 hours	456 hours	25.7 25.6	25.2	-	0.8	D
Y	6.7 X rs	175 X urs	24.6	24.0 ^{25.0}) -	0.8	G
J	8.0 hours	209 hours	24.5	23.7	22.3	0.8	G
Н	8.0 hours	221 hours	24.0	22.7	22	0.8	В
K _s	6.7 hours	180 hours	23.5	21.7	20.8	0.8	В

Filter	Time (per source)	Time (survey		5σ AB	5σ Vega	UKIDS DXS	S- Seeing	Moon
Ζ	17.5 hours	456 hou	urs	25.7	25.2	-	0.8	D
Y	6.7 hours	175 ho	urs	24.6	24.0	-	0.8	G
J	8.0 hours	209 ho	urs	24.5	23.7	22.3	0.8	G
Н	8.0 hours	221 ho	urs	24.0	22.7	22	0.8	В
K _s	6.7 hours	180 ho	urs	23.5	21.7	20.8	0.8	В
Filter	Time (h) (per pixel)	1'' (5σ)	2". (5σ)		4'' (5σ)	5″ (5σ)		
Z Y J H K _s	17.13 6.05 9.65 8.13 9.03	26.89 25.60 25.59 25.25 24.86	25.60 24.5 24.4 24.12 23.7	1 23.74 4 23.70 2 23.42	23.18 23.11 22.87	23.83 22.73 22.63 22.40 22.13	Jarvis et al. MNRAS, 428	

100th of The VIDEO Survey

100th of The VIDEO Survey

100th of The VIDEO Survey


Hubble UDF

Multi-wavelength data in the VIDEO fields

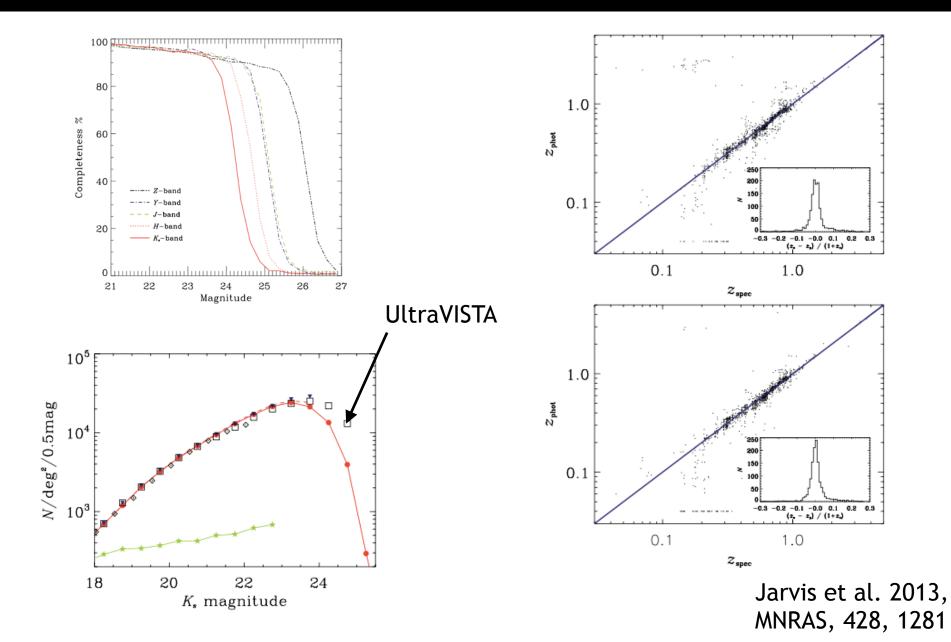
- Spitzer Representative Volume Survey (SERVS) (1400 hours). Provides 3.6 and 4.5 μ data to VIDEO depths (L* at z~5)
- VIDEO entered data sharing agreement with the Dark Energy Survey. griz photometry to depths of AB~27 (5sigma)
- Covered by VST-VOICE in optical
- Covered by Herschel-HerMES survey (100-500um)
- ACTPol deep field over VIDEO-XMM-LSS footprint
- ECDFS field is also the LADUMA field (Deep HI survey with MeerKAT)
- All fields covered by MeerKAT's MIGHTEE Survey for HI and radio continuum (co-PI Jarvis)
- XMMLSS covered by HSC and new JVLA observations
- VIDEO fields fully covered by LSST Deep Drilling fields

VIDEO: What is happening?

- VIDEO Science has been mainly done over the single XMM-3 field (therefore very similar in scale to UltraVISTA/COSMOS)
- Now have 3sq.deg contiguous field will provide the first real niche science for VIDEO in XMMLSS (~4sq.deg with UKIDSS-UDS field)

- VIDEO Science has been mainly done over the single XMM-3 field (therefore very similar in scale to UltraVISTA/COSMOS)
- Now have 3sq.deg contiguous field will provide the first real niche science for VIDEO in XMMLSS (~4sq.deg with UKIDSS-UDS field)
- ELAIS-S1 (minus J-band) also has 3sq.deg coverage
- CDFS needs to catch up (competes with XMMLSS for time on sky)

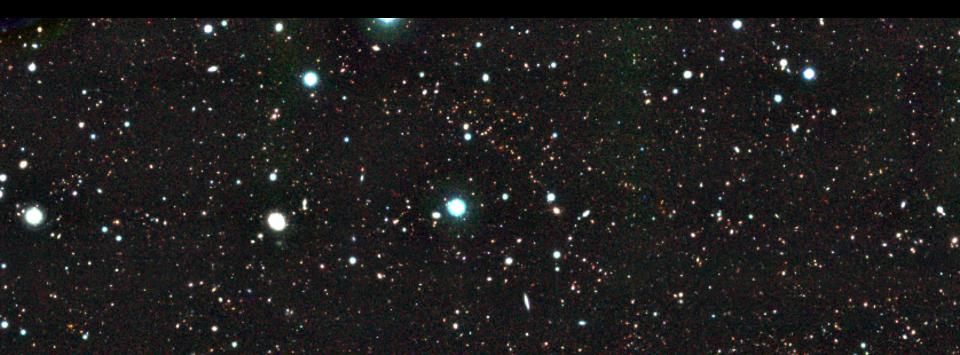
VIDEO: What is happening?

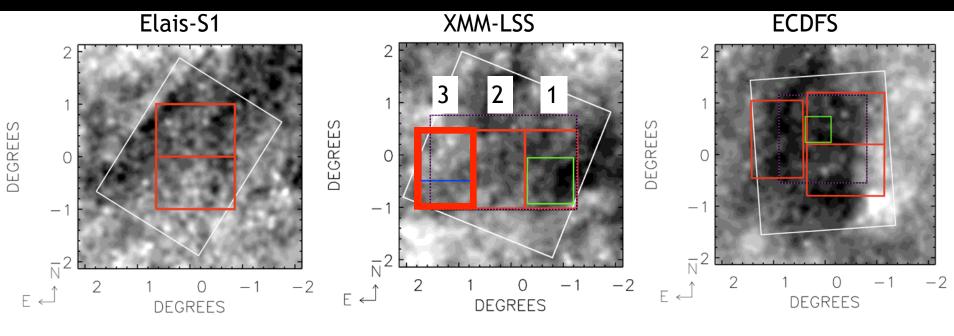

DR1 released 25/7/2011 - XMM3 source lists and tiles

DR2 released Jan-Apr 2014 - CDFS/ES1/XMM source lists in all tiles - Deep Stack and band-merged catalogues in XMM3

DR3 in preparation - will contain data to the end of Dec 2014. Can access stacked images and catalogues through VIDEO web site now at <u>http://www-astro.physics.ox.ac.uk/~video/public/Home.html</u>

	Z	Υ	J	Н	Ks
Total for Completion	68*	70	36	39	42
ХММ1	68	70	36	39	42
XMM2		70	36	39	42
ХММ3	68	70	36	39	42
CDFS1	51	70	36	39	42
CDFS2		70	7	6	42
CDFS3		7	20	0	9
ES1-N	68	70	17	39	42
ES1-S	32	70	17	39	42

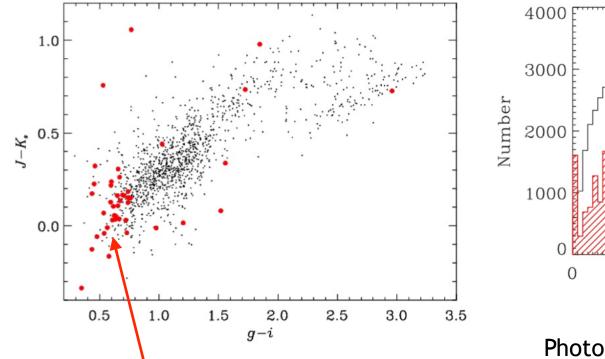

VIDEO: First results from XMMLSS Tile 3



VIDEO: What is happening?

- DES data now providing optical data that is complementary in depth to VIDEO in griz
- VST-VOICE also providing ugr data
- VIDEO team putting VIDEO data on the same pixel scale as complementary optical data (and matching PSF)
- Plans to incorporate VIDEO data into (Radio)GalaxyZoo

VIDEO Science Highlights



VIDEO = 3 deg^2

4.5 deg² UKIDSS UDS CFHT Legacy Survey D1 4.5 deg²

VIDEO: Survey paper

Photometric redshift distribution peaks at z~1 and extends all the way to z~6 (see later)

3

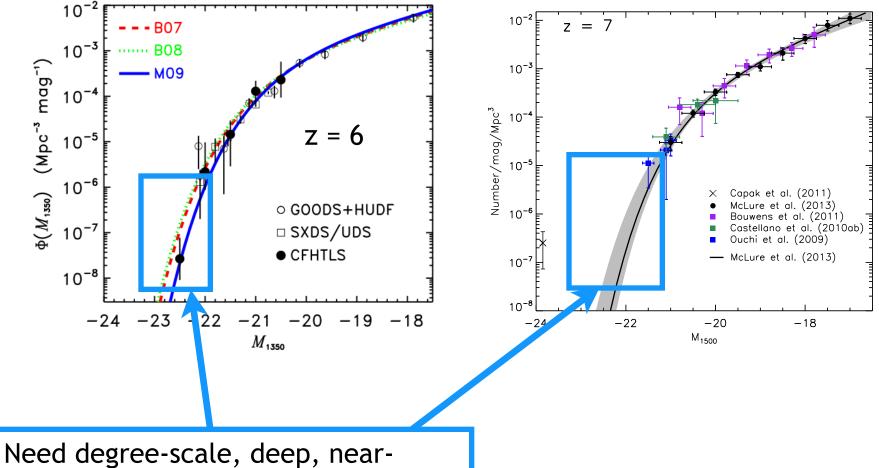
Redshift

2

The photometric redshift outliers tend to be blue and have emission lines indicative of an AGN

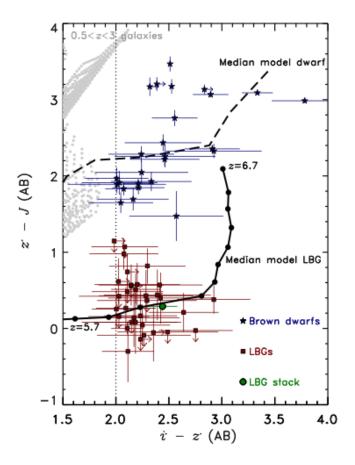
0.3% outlier rate found if we remove galaxies with a best fit AGN template!

Jarvis et al. 2013, MNRAS, 428, 1281

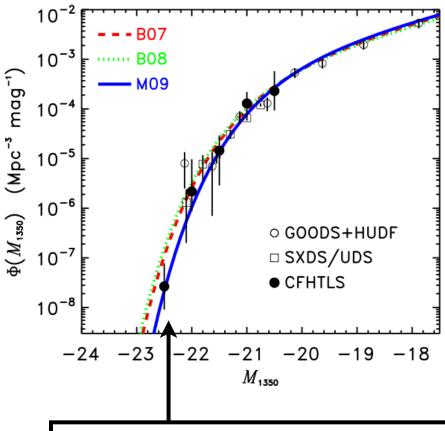

Galaxies

5

6


AGN

VIDEO: Lyman-break galaxies at z ~ 6/7

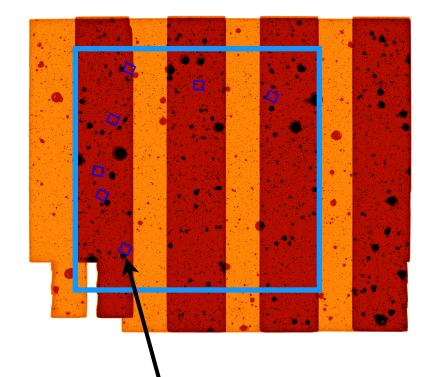


infrared surveys to probe the brightend of rest-frame UV LF

VIDEO: Lyman-break galaxies at z ~ 6

Using 4 CFHT Legacy Survey fields D1 overlaps with VIDEO D2 overlaps with UltraVISTA/COSMOS

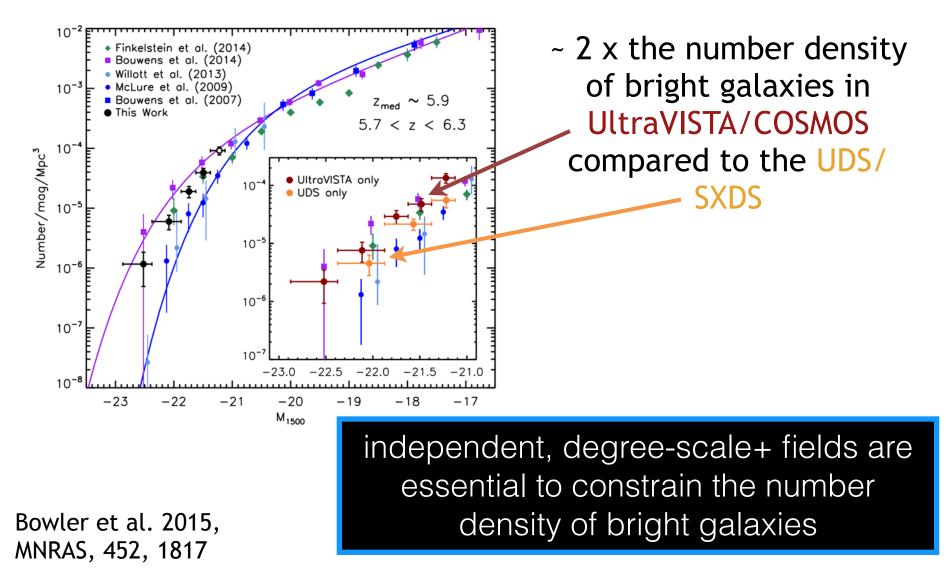


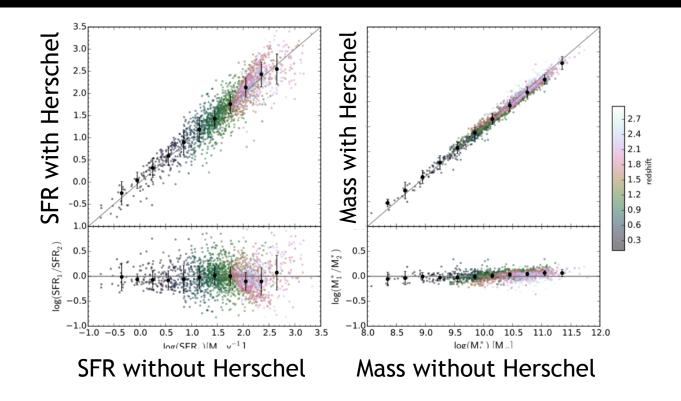

Key aspect is the constraint at the bright end, which are only accessible with ~degree scale surveys

Selecting z~6 galaxies with VIDEO + CFHT (Willott et al., 2013, AJ, 145, 4)

VIDEO: Lyman-break galaxies at z ~ 7

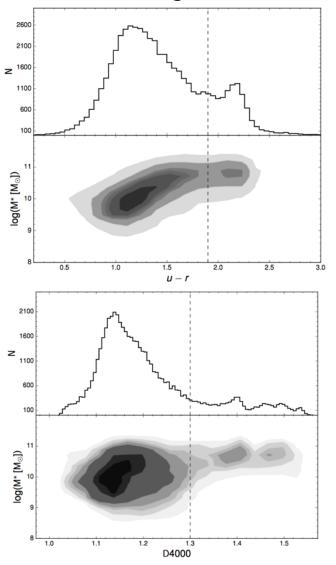
Using UltraVISTA/COSMOS + UKIDSS-UDS/VIDEO

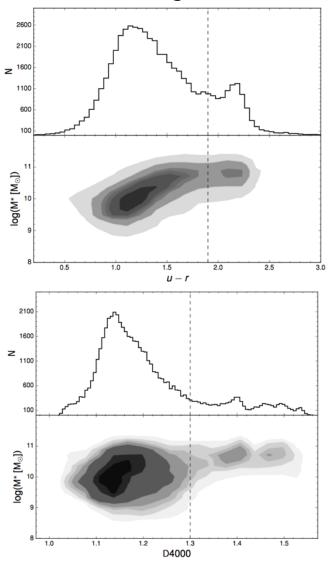



HST/WFC3 pointings

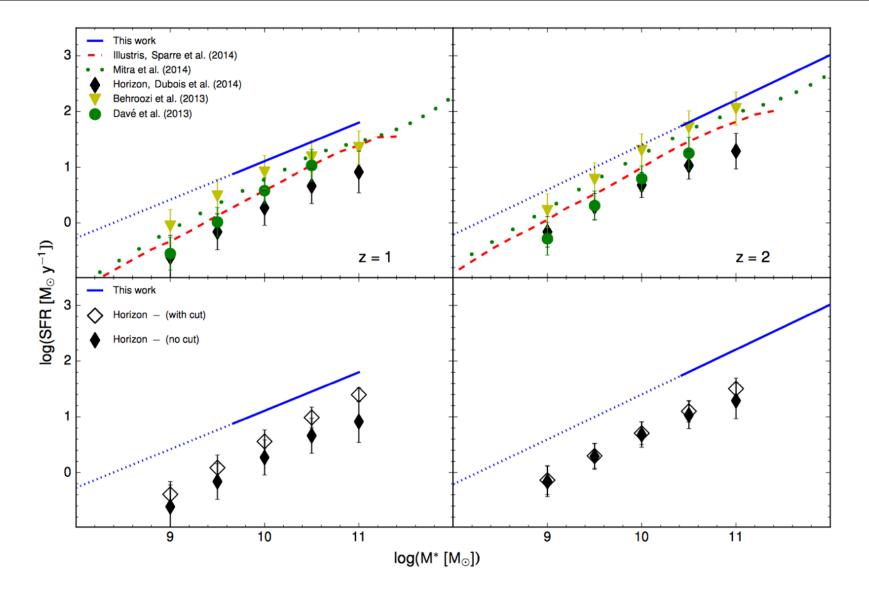
Bowler et al. 2014, MNRAS, 440, 2810

VIDEO: Lyman-break galaxies at z ~ 6


Using UltraVISTA/COSMOS + UKIDSS-UDS/VIDEO

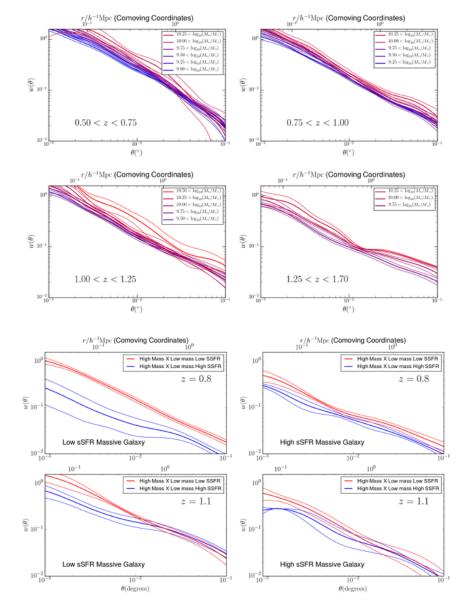

- Using CFHTLS + VIDEO + Spitzer + Herschel data
- With CIGALE code used to model full SED from rest-frame UV to FIR
- Propagating P(z) uncertainties through to M/SFR determination

Selecting SFGs

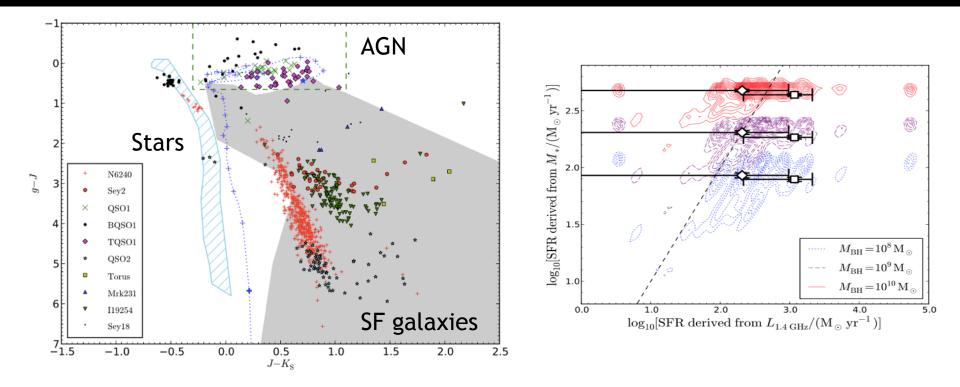


Star formation main sequence to z~3 $0.10 < z \le 0.30$ N_{gal} = 1713 (1046) $0.30 < z \leq 0.50$ $0.50 < z \leq 0.70$ 3 N_{gal} = 3264 (2259) $N_{gal} = 3689 (2553)$ 2 1 0 $r_{C} = 0.81 \pm 0.02$ $r_{C} = 0.71 \pm 0.02$ $r_{C} = 0.64 \pm 0.02$ $0.70 < z \leq 0.90$ $0.90 < z \leq 1.10$ $1.10 < z \leq 1.30$ 3 $N_{gal} = 4791(3311)$ $N_{gal} = 5072(3499)$ $N_{gal} = 4954 (3429)$ 0 SFR $r_{\rm C} = 0.62 \pm 0.02$ $r_{C} = 0.65 \pm 0.02$ $r_{C} = 0.62 \pm 0.02$ $\begin{array}{l} 1.30 \ < z \ \leq 1.50 \\ N_{gal} = 4233 \ (2489) \end{array}$ $\begin{array}{l} 1.50 \ < z \ \leq 1.70 \\ N_{gal} = 4618 \ (2623) \end{array}$ $\begin{array}{l} 1.70 \ < z \ \leq 1.90 \\ N_{gal} = 3585 \ (1985) \end{array}$ 3 0 $r_{\rm C} = 0.45 \pm 0.03$ $r_{\rm C} = 0.46 \pm 0.03$ $r_{C} = 0.48 \pm 0.03$ $1.90 < z \leq 2.10$ 2.10 < z < 2.30 $2.30 < z \leq 3.00$ 3 N_{gal} = 2956 (1532) $N_{gal} = 3277 (1335)$ N_{gal} = 2055 (969) 0 $r_{C} = 0.57 \pm 0.03$ $r_{C} = 0.59 \pm 0.04$ $r_{C} = 0.56 \pm 0.04$ -1 9 10 11 12 9 10 11 12 9 10 11 12 **Stellar Mass**

Selecting SFGs



Star formation main sequence to z~3 $0.10 < z \le 0.30$ N_{gal} = 1713 (1046) $0.30 < z \leq 0.50$ $0.50 < z \leq 0.70$ 3 $N_{gal} = 3264 (2259)$ $N_{gal} = 3689 (2553)$ 2 $r_{C} = 0.81 \pm 0.02$ $r_{C} = 0.71 \pm 0.02$ $r_{C} = 0.64 \pm 0.02$ $0.90 < z \leq 1.10$ $1.10 < z \leq 1.30$ $0.70 < z \leq 0.90$ 3 $N_{gal} = 4791 (3311)$ $N_{gal} = 5072(3499)$ $N_{gal} = 4954 (3429)$ С Using the first square degree of VIDEO data N_{gal} = 4233 (2489) 3 Ngal = 4618 (2623) $N_{gal} = 3585 (1985)$ 194L 0 $r_{\rm C} = 0.45 \pm 0.03$ $r_{\rm C} = 0.46 \pm 0.03$ $r_{C} = 0.48 \pm 0.03$ $1.90 < z \leq 2.10$ 2.10 < z < 2.30 $2.30 < z \leq 3.00$ 3 N_{gal} = 2956 (1532) N_{gal} = 2055 (969) $N_{gal} = 3277 (1335)$ 0 $r_{C} = 0.57 \pm 0.03$ $r_{C} = 0.59 \pm 0.04$ $r_{C} = 0.56 \pm 0.04$ _1 9 10 11 12 9 10 11 12 9 10 11 12 Stellar Mass


VIDEO: galaxy-halo connection

- Galaxy clustering analysis over 1 sq. deg
 -> proof of concept for full survey
- Halo Occupation Distribution modelling of the angular two-point correlation function
- Cross-correlation functions of different mass galaxies probes galactic conformity

Hatfield et al. in prep.

VIDEO: Radio-quiet quasars

- Probing the radio emission from sample of unobscured quasars selected from optical/near-IR colours
- Using VLA-VIRMOS deep field data at 1.4 GHz to look at origin of radio emission at low radio fluxes star-formation or accretion?

White et al. 2015, MNRAS, 448, 2665

Summary

- VIDEO is progressing well
- The whole survey should be finished in 2017
- Up to now science has been restricted by optical-data, this is now changing with DES, VST and also HSC
- VIDEO is now entering the key period for unique science that cannot be done with UltraVISTA
- Lots of activity both within the VIDEO team and from the wider community using VISTA data
- 26 papers that use VIDEO data directly thus far, and many more to come

See Jarvis et al. 2013, MNRAS, 428, 1281 for more details or the website: http://www-astro.physics.ox.ac.uk/~video/public/Home.html