XQ-100: A legacy survey of 100 quasars and their absorption lines observed with VLT/XSHOOTER

S. López (U. de Chile) on behalf of the XQ-100 Collaboration

George Becker, Lise Christensen, Stefano Cristiani, Guido Cupani, Kelly Denney, Mirka Dessauges-Zavadsky, Valentina D'Odorico, Sara Ellison, Martin Haehnelt, Fred Hamann, Joseph Hennawi, Vid Irsic, Tae-Sun Kim, Brice Ménard, Isabelle Pâris, J. Xavier Prochaska, Ruben Sanchez Ramirez, Marianne Vestergaard, Matteo Viel, Lutz Wisotzki, Gábor Worseck, Trystyn Berg, Pia Cortes, Serena Perrotta,, Rikke Lund Saust

- Context and motivation
- Survey design, observations, data reduction
- Selected ongoing science
- Science products

QSO spectrum: intervening absorption lines

- Trace the circum- & inter-galactic medium.
 - CGM / ISM:
 - probe gas abundances of heavy elements and gas that fuels galaxy formation
 - galaxy formation and evolution
 - **IGM**:
 - 90% baryons (mostly ionized)
 - probe the LSS, BAOs, UVB, re-ionization, primordial abundances
 - cosmology

QSO spectrum: emission lines

 $\lambda_{obs} / \lambda_{o} = 1 + z$ Broad Emission Line Widths and quasar continuum luminosities: İNIV] SilV/OIV black hole masses, accretion rates, 3 bolometric luminosities (L/L_{edd}) CE 2.5 s Mannalla erg 2 $(\times 10^{-1})$ 1.5 Flux 1 HeII1640-K. Denney Density, f_A (Arbitrary Units) 6500 6000 7000 10 Observed Wavelength (Å) 5 Mgll Absorption [011] Line studies: metallicities; outflows; feedback 0.5 Vanden Berk et al. 2001 2000 4000 8000 6000 Rest Wavelength, λ (Å)

Broad Emission Line flux ratios: metallicity estimates, SED diagnostics Broad and Narrow Emission Line Properties, e.g., profile shape, strength (EW), peak wavelength, asymmetries, etc.: accurate redshifts, nuclear structure, kinematics (outflows?), SED diagnostics

Echelle spectroscopy needed

XQ-100 survey

- <u>Homogeneous</u> sample of 100 VLT/XSHOOTER spectra of QSOs at z = 3.5-4.5
- CD, full spectral coverage 310-2400 nm
- R = 6000 (UVB), 9000 (VIS), 6000 (NIR)
- SNR = 30 (median)
- 100 hours as an ESO LP within Chilean time

Main science goals (team leaders)

Galaxies in Absorption

- MgII survey (Lopez)
- DLA survey (Ellison)
- CGM / IGM sciemce
 - LLS survey (Prochaska)
 - Proximity effect (Worseck)
- AGN science
 - IR redshifts (Paris)
 - Physical properties of AGN (Hamann)
 - Associated absorbers (D'Odorico)
- Cosmology
 - Matter power spectrum (Viel)

- Galaxies in Absorption
 - MgII survey (Lopez)
 - DLA survey (Ellison)
- CGM / IGM sciemce
 - LLS survey (Prochaska)
 - Proximity effect (Worseck)
- AGN science
 - IR redshifts (Paris)
 - Physical properties of AGN (Hama)
 - Associated absorbers (D'Odoric)
- Cosmology
 - Matter power spectrum (Viel)

Required signicance in *dN/dz* and fluxpower spectrum dictates need for 100 QSOs

Why 3.5 < *z* < 4.5

- Galaxies in Absorption
 - MgII survey (Lopez)
 - DLA survey (Ellison)
- CGM / IGM sciemce
 - LLS survey (Prochaska)
 - Proximity effect (Worseck)
- AGN science
 - IR redshifts (Paris)
 - Physical properties of AGN (Hay Inn)
 - Associated absorbers (D'Odc .co)
- Cosmology
 - Matter power spectrum (Viel)

 z > 3.5: every QSO contributes redshift path of at least 0.5 for Mg II survey in the NIR

• *z* < 4.5 avoids line crowding in the forest.

Unique spectroscopic QSO survey

Galaxies in Absorption

- MgII survey (Lopez)
- DLA survey (Ellison)
- CGM / IGM sciemce
 - LLS survey (Prochaska)
 - Proximity effect (Worseck)
- AGN science
 - IR redshifts (Paris)
 - Physical properties of AGN (Hamann)
 - Associated absorbers (D'Odorico)
- Cosmology
 - Matter power spectrum (Viel)

Combination of

- blind survey
- high redshift
- echelle resolution,
- high S/N

clearly a benefit for all science goals !

Target selection

- Targets selected initially from NED to have z > 3.5 and $\delta < 15$
- APM catalog checked to obtain uniform *R* magnitudes.
- Some additional targets selected from literature sources.
- Avoid SDSS color bias

XQ-100, Sebastián López, Rainbows on the Southern

12/100 OBs repeated

Ongoing research with XQ-100

MgII survey (Lopez)

1.0

dN/dz

- Galaxies in Absorption
 - Mgll survey 🛴
 - DLA survey (Ellison)
- CGM / IGM sciemce
 - LLS survey (Prochaska)
 - Proximity effect (Worseck)
- AGN science
 - IR redshifts (Paris)
 - Physical properties of AGN (Hamann)
 - Associated absorbers (D'Odorico)
- Cosmology
 - Matter power spectrum (Viel)

 10^{4}

¹ Mpc⁻²

Zhu & Menard 2013

Strong MgII traces SFR

D

dN

MgII survey

Lopez et al.

XQ-100 advantage: probe the weak MgII: $0.05 < W_{0} < 0.6 \text{ Å}$

DLA survey (Ellison)

- Galaxies in Absorption
 - MgII survey (Lopez)
 - DLA survey (Ellison)
- CGM / IGM scien.
 - LLS survey (Procha
 - Proximity effect (Worse
- AGN science
 - IR redshifts (Paris)
 - Physical properties of
 - Associated absorbers
- Cosmology
 - Matter power spectrum (Viel)

XQ-100 R/SNR: blending, abundances

LLS survey (Prochaska)

- Galaxies in Absorption
 - MgII survey (Lopez)
 - DLA survey (Ellison)
- CGM / IGM sciemce
 - LLS survey (From
 - Proximity effect (Worseck)
- AGN science
 - IR redshifts (Paris)
 - Physical properties of AGN (Hamann)
 - Associated absorbers (D'Odorico)
- Cosmology
 - Matter power spectrum (Viel)

Significant opacity to ionizing radiation
No proper survey performed to date

XQ-100 has terrific combination of SNR, R, and spectral coverage. Sufficient dataset to reveal 100+ pLLS at $z\sim3-4$

- Galaxies in Absorption
 - MgII survey (Lopez)
 - DLA survey (Ellison)
- CGM / IGM sciemce
 - LLS survey (Prochaska)
 - Proximity effect (Worseck)
- AGN science
 - IR redshifts (Paris)
 - Physical properties of AGN (Hamann)
 - Associated absorbers (D'Odorico)
- Cosmology
 - Matter power spectrum (Viel)

Probe high-redshift and high-luminosity quasars with CIV/MgII in one single sample

AGN science (I): Metallicities in the Broad Line Region

Vestergaard, Hamann et al.

011010010100110101

Wide range of metallicities across the relatively narrow redshift range.

AGN science (II):Using XQ100 Sample to probe non-variable flux in CIV SE Line Emission Denney, Hamann et al.

Narrow Associated Lines Perrotta et al. (in prep) (see talk by Valentina D'Odorico)

- Galaxies in Absorption
 - MgII survey (Lopez)
 - DLA survey (Ellison)
- CGM / IGM sciemce
 - LLS survey (Prochaska)
 - Proximity effect (Worseck)
- AGN science
 - IR redshifts (Paris)
 - Physical properties of AGN (Hamann)
 - Associated absorbers (D'Odorico)
- Cosmology
 - Matter power spectrum (Viel)

Lyα forest traces DM fluctuations

Matter power spectrum

Irsic, Viel et al.

XQ-100 Products

SDP and Phase 3

Three "data collections"

• XQ-100_raw

- Reduced, flux calibrated spectra of the separate UVB, VIS and NIR arms
- XQ-100_telluric
 - Same as above but having telluric correction
- XQ-100_merged
 - Merged spectra with 3 different continua fitted.

Table A.3	. Parameters associated to each	^{h XQ.} Su	mmary file		
Column	Name	For			
1	OBJ NAME	STRING	Object name		
2	RA	DOUBLE	Right Ascension in sexagesimal degrees (J2000)		
3	DEC	DOUBLE	Declination in sexagesimal degrees (J2000)		
4	FILE_NAME	STRING	Base of file names		
5	Z_QSO	DOUBLE	Redshift (PCA)		
6	ERR_ZQSO	DOUBLE	Error on QSO redshift (PCA)		
7	N_OBS	SHORT	Number of XSHOOTER observations		
8	MJD_OBS	INT32[3]	Modified Julian day of the spectroscopic observation		
9	SEEING_START	FLOAT[3]	Seeing at the beginning of each spectroscopic observation (in arcsec)		
10	SEEING_END	FLOAT[3]	Seeing at the end of each spectroscopic observation (in arcsec)		
11	SNR_1700	FLOAT[3]	SNR at 1 700Å (rest) for each spectrum		i
12	SNR 3000	FLOAT[3]	SNR at 3 000Å (rest) for each spectrum		
13	SNR 3600	FLOAT[3]	SNR at 3 600Å (rest) for each spectrum	1 1 1 1 1 1 1	
14	CALIB_FLAG	FLOAT[3]	Calibration flags (one per XSHOOTER observation)	1 : 1	
			1- VIS flux-calibrated with a different standard star		
			2- residual spikes in the UVB		
			4- apparent (albeit slight) order-to-order fluctuations in the VIS	1400	01
			8- interrupted exposure	1400	21
15	COMBINED_FLAG	SHORT	Combined spectrum flag (1 if combined, 0 if not)		
16	COMBINED_SNR_1700	FLOAT	SNR at 1700Å (rest) of combined spectrum	Wavelength	(nm)
17	COMBINED SNR 3000	FLOAT	SNR at 3000Å (rest) of combined enectrum	The following the	

2100

60

440

Astronomy & Astrophysics manuscript no. XQ-100_3.0 September 30, 2015

Papers

©ESO 2015

XQ-100: A legacy survey of one hundred 3.5 $\lesssim z \lesssim 4.5$ quasars observed with VLT/XSHOOTER *,†

S. López¹, V. D'Odorico², S. L. Ellison³, G. D. Becker^{4,10}, L. Christensen⁵, G. Cupani², K. D. Denney⁶, I. Pâris², G. Worseck⁷, T. A. M. Berg³, S. Cristiani^{2,8}, M. Dessauges-Zavadsky⁹, M. Haehnelt,¹⁰ F. Hamann¹¹, J. Hennawi⁷, V. Iršič¹², T.-S. Kim², P. López¹, R. Lund Saust⁵, B. Ménard¹³, S. Perrotta^{14,2}, J. X. Prochaska¹⁵, R. Sánchez-Ramírez^{16,17,18} M. Vestergaard,^{5,19} M. Viel^{2,8}, and L. Wisotzki²⁰

1 2 3	Departamento INAF-Osserva Department o	 Lopez et al., survey design, reduction steps, SDP structure; to be submitted 	as.uchile.cl
4 5	Space Telescoj Dark Cosmolo hagen, Denma	 Sanchez-Ramirez et al., DLAs, submitted 	K-2100 Copen-
6 7	Department o Max-Planck-Ii	• Berg et al., DLAs, in prep.	USA
9 10	INFN / Natio Observatoire (Institute of As	• Perrotta et al., AALs, in prep.	K

- ¹¹ Department of Astronomy, University of Florida, Gainesville, FL 32611-2055, USA
- ¹² International Center for Theoretical Physics (ICTP), Strada Costiera 11 I-34151 Trieste, Italy
- ¹³ Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA ; Alfred P. Sloan Fellow
- ¹⁴ International School for Advanced Studies (SISSA) via Bonomea, 265 I-34136 Trieste, Italy
- ¹⁵ Department of Astronomy and Astrophysics, UCO/Lick Observatory, University of California, 1156 High Street, Santa Cruz, CA 95064, USA
- ¹⁶ Unidad Asociada Grupo Ciencias Planetarias (UPV/EHU, IAA-CSIC), Departamento de Física Aplicada I, E.T.S. Ingeniería, Universidad del País Vasco (UPV/EHU), Alameda de Urquijo s/n, E-48013 Bilbao, Spain
- ¹⁷ Ikerbasque, Basque Foundation for Science, Alameda de Urquijo 36-5, E-48008 Bilbao, Spain
- ¹⁸ Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía s/n, E-18008, Granada, Spain

