

The HUGS survey: A complete view of the first 2 billion years of galaxy formation

A. Fontana (INAF Rome Obs)

2 Large Programmes executed with Hawk-I

A STRODEE P

181.A0717 "A deep infrared view of the early Universe: exploiting the unique capabilities of HAWK-I to explore the reionization epoch"

186.A0898 "A complete view of the first 2 billion years of galaxy formation"

Both programs were designed to exploit the unique **Hawk-I** capabilities:

- extreme efficiency,
- "wide" FoV,
- image quality

2 Large Programmes executed with Hawk-I

181.A0717 "A deep infrared view of the early Universe: exploiting the unique capabilities of HAWK-I to explore the reionization epoch"

- Exploration of the Early Universe
- How did first stars and galaxies formed?
- What/when re-ionized the Universe?

2 Large Programmes executed with Hawk-I

181.A0717 "A deep infrared view of the early Universe: exploiting the unique capabilities of HAWK-I to explore the reionization epoch"

- Exploration of the Early Universe
- How did first stars and galaxies formed?
- What/when re-ionized the Universe?

186.A0898 "A complete view of the first 2 billion years of galaxy formation"

- Assessing a <u>complete</u> picture of the Early Universe;
- Securing ESO contribution to CANDELS the major HST survey
- Are there red galaxies (dust-reddened starbursts or quiescent) at high-z?
- Can we reliably trace the mass assembly process at z>4?
- Are our estimates of SFR and mass growth consistent?

Searching for z~7 galaxies with a deep Hawk-I survey

Hawk-I Science Verification ESO LP (HAWK-I+FORS2) -PI A. Fontana ~ 160hr VLT time

Hawk-I: bright &rare WFC3: faint & numerous

Our Hawk-I program was designed to allow for efficient spectroscopic follow-up:

P84 & P85: VLT Ultradeep spectroscopy ~30 targets in 3fields ~70hr with red-enhanced FORS2

P84 & P85: VLT Ultradeep spectroscopy ~30 targets in 3fields ~70hr with red-enhanced FORS2

The first reliable detection of galaxies at z>7 (Vanzella+11)

Establish that the Lya visibility drops at z>6.5: evidence for reionization? (Fontana+10, Pentericci+11, Pentericci+14, vs Stark+10),

ALMA detection: the assembly of "normal" galaxies at z~7 (Maiolino+15)

just started: KMOS LP on GLASS z=8 candidates (Fontana et al, 196.A-0778)

velocity [km/s]

CANDELS: the largest HST program ever approved WFC3 deep/wide exposures over 5 extragal. fields P.I.: S. Faber, H. Ferguson.

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 197:35 (39pp), 2011 December

Table 1 CANDELS at a Glance									
Field	Coordinates	Tier	WFC3/IR Tiling	HST Orbits/Tile	IR Filters ^a	UV/Optical Filters ^b			
GOODS-N	189.228621, +62.238572	Deep	~3 × 5	~13	YJH	UV,UI(WVz)			
GOODS-N	189.228621, + 62.238572	Wide	2 @ ~2 × 4	~3	YJH	Iz(W)			
GOODS-S	53.122751, -27.805089	Deep	$\sim 3 \times 5$	~13	YJH	I(WVz)			
GOODS-S	53.122751, -27.805089	Wide	$\sim 2 \times 4$	~3	YJH	Iz(W)			
COSMOS	150.116321, +2.2009731	Wide	4×11	~ 2	JH	VI(W)			
EGS	214.825000, + 52.825000	Wide	3 × 15	~ 2	JH	VI(W)			
UDS	34.406250, -5.2000000	Wide	4×11	~2	JH	VI(W)			

GROGIN ET AL.

CANDELS: the largest HST program ever approved WFC3 deep/wide exposures over 5 extragal. fields P.I.: S. Faber, H. Ferguson.

HUGS (Hawk-I UDS and GOODS Survey):

A Rome-Edinburgh+ CANDELS program A.Fontana (PI), J. Dunlop, Faber, Ferguson et al...

Large Hawk-I@VLT program (250hr)

186.A- 0898 + 181.A- 0717 AND HAWK-I SV

UDS Observing Plan:

- 3 pointings, 85% of the CANDELS area
- Y~26.5 (~8h per pointing) and K~26 (~13h per pointing)

GOODS Observing Plan:

- 100% of the CANDELS area
- The deepest K band ever
- Matches deep/wide depth

HUGS (Hawk-I UDS and GOODS Survey):

A Rome-Edinburgh+ CANDELS program A.Fontana (PI), J. Dunlop, Faber, Ferguson et al...

Large Hawk-I@VLT program (250hr)

186.A- 0898 + 181.A- 0717 AND HAWK-I SV

Science goals:

- I. Locating and measuring the Balmer break at z>3.5
- 2. Improving photo-z accuracy for z>4 (Balmer break)
- 3. Improving photo-z accuracy for z>7 (Lyman break)
- 4. Assembling a complete sample of galaxies at z>4

Massive quiescent galaxy candidate at z>3 in CANDELS

To extend the exercise at higher z we need to observe redder bands.

The difference in resolution has a twofold effect: a) worsen the completeness;

b) makes photometry more complicated due to blending, requiring appropriate techniques for deconvolution.

HUGS (Hawk-I UDS and GOODS Survey):

A Rome-Edinburgh+ CANDELS program A.Fontana (PI), J. Dunlop, Faber, Ferguson et al...

Large Hawk-I@VLT program (250hr)

186.A- 0898 + 181.A- 0717 AND HAWK-I SV

Fontana, Dunlop+, 14

1σ , $1\operatorname{arcsec}^2$ 5σ , $1\mathrm{FWHM}^2$

Layout and summary of observations for the GOODS-S field. We note that each pointing has been rotated with PA=-19.5 degrees

Pointing	Central RA	Central DEC	Exposure time (Sec)	Final seeing	maglim ⁽¹⁾	maglim ⁽²⁾
			K band			
GOODS-D1	03:32:36.835	-27:47:45.24	113520	0.39	27.8	26.5
GOODS-D2	03:32:24.890	-27:48:33.22	112800 ^{3 Th}	0.38	27.8	26.5
GOODS-W1	03:32:41.080	-27:51:44.32	47220	0.43	27.4	26.0
GOODS-W2	03:32:29.650	-27:44:37.26	40800	0.38	27.3	26.0
GOODS-W3	03:32:31.796	-27:51:01.74	37320	0.38	27.3	25.9
GOODS-W4	03:32:20.242	-27:44:59.97	41880	0.42	27.3	25.8

Same for UDS - K_{lim} ~26 (5 σ), Y_{lim} ~26.8 (5 σ)

The Hawk-I UDS and GOODS Survey (HUGS): Survey design and deep K-band number counts***

A. Fontana¹, J. S. Dunlop², D. Paris¹, T. A. Targett^{2,3}, K. Boutsia¹, M. Castellano¹, A. Galametz¹, A. Grazian¹,

R. Politalia ', J. S. Dulliop', D. Paris ', P. A. Talgett '', K. Boutsla ', M. Castellano ', A. Galanietz ', A. Oraziali ', R. McLure², E. Merlin¹, L. Pentericci¹, S. Wuyts⁴, O. Almaini⁵, K. Caputi⁶, R.-R. Chary⁷, M. Cirasuolo²,
C. J. Conselice⁵, A. Cooray⁸, E. Daddi⁹, M. Dickinson¹⁰, S. M. Faber¹¹, G. Fazio¹², H. C. Ferguson¹³, E. Giallongo¹, M. Giavalisco¹⁴, N. A. Grogin¹³, N. Hathi¹⁵, A. M. Koekemoer¹³, D. C. Koo¹¹, R. A. Lucas¹³, M. Nonino¹⁶, H. W. Rix¹⁷, A. Renzini¹⁸, D. Rosario⁴, P. Santini¹, C. Scarlata¹⁹, V. Sommariva^{1,21}, D. P. Stark²⁰, A. van der Wel¹⁷, E. Vanzella²¹, V. Wild^{22,2}, H. Yan²³, and S. Zibetti²⁴

Improving the accuracy in mass determination

GOODS (A.F.+06) z~2-4, K<24

Improving the accuracy in mass determination

The Hawk-I UDS and GOODS Survey (HUGS): Survey design and deep K-band number counts***

A. Fontana¹, J. S. Dunlop², D. Paris¹, T. A. Targett^{2,3}, K. Boutsia¹, M. Castellano¹, A. Galametz¹, A. Grazian¹, R. McLure², E. Merlin¹, L. Pentericci¹, S. Wuyts⁴, O. Almaini⁵, K. Caputi⁶, R.-R. Chary⁷, M. Cirasuolo²,

C. J. Conselice⁵, A. Cooray⁸, E. Daddi⁹, M. Dickinson¹⁰, S. M. Faber¹¹, G. Fazio¹², H. C. Ferguson¹³, E. Giallongo¹,

M. Giavalisco¹⁴, N. A. Grogin¹³, N. Hathi¹⁵, A. M. Koekemoer¹³, D. C. Koo¹¹, R. A. Lucas¹³, M. Nonino¹⁶,

H. W. Rix¹⁷, A. Renzini¹⁸, D. Rosario⁴, P. Santini¹, C. Scarlata¹⁹, V. Sommariva^{1,21}, D. P. Stark²⁰, A. van der Wel¹⁷, E. Vanzella²¹, V. Wild^{22,2}, H. Yan²³, and S. Zibetti²⁴

CANDELS+HUGS data are public on the ESO archive (we even passed Phase 3):

▲ UDS and GOODS-S images (Y and K) Multiwavelength Catalogs: HST + HUGS + Spitzer (including also photo-z, stellar masses etc) Galametz et al (UDS) 2013 Guo et al (2013) (GOODS-S) Fontana et al (2014) (Images+revised GOODS-S)

In total ~ 200 citations

The distribution of quiescent galaxies at z~2

Sommariva, AF+2014

Assessing the completeness via dedicated simulations

The drop is real:

quenching mechanism(s) are ineffective at low masses.

Is this feature predicted by models?

Sommariva, AF+2014

Is this feature predicted by models?

The evolution of the mass function at z>4

ASTRODEEP

CANDELS +HUGS - GOODS-S+UDS. (Grazian, AF+15) H-selected sample, full photo-z selection

What is the average M/L? ●

(Gonzalez+11)

• Red massive galaxies at z>4 (Grazian, AF+15)

• Red massive galaxies at z>4 (Grazian, AF+15)

Grazian, AF,+15,

Grazian, AF,+15,

Grazian, AF,+15,

Real decrease or selection effects playing against? We need JWST for NIRCam/MIRI-selected samples

The evolution of the mass function at z>4

ASTRODEEP

CANDELS +HUGS - GOODS-S+UDS. (Grazian, AF+15) H-selected sample, full photo-z selection

The evolution of the mass function at z>4

ASTRODEEP

CANDELS +HUGS - GOODS-S+UDS. (Grazian, AF+15) H-selected sample, full photo-z selection

Is the overall picture consistent?

Smit+12 UV LF -> SFR Funct.

Is the overall picture consistent?

ASTRODEEP

 $z=6 \rightarrow 4 \Delta M / \Delta t$: ~290 Msun/yr

Is the overall picture consistent?

z=6 ->4 ΔM / Δt: ~290 Msun/yr

- To fix, among possible options
 - Revise (upward) SFR estimates in LBG;
 - A missing population of dusty sfr-ing galaxies at z>4

....more to come...

Dusty starbursts at z>4 (T. Wang et al, subm.)

(E. Merlin et al, in prep)

H-dropouts at z>3 (K. Boutsia et al, in prep)

Summary

Hawk-I surveys can effectively complement medium-deep HST surveys;

HUGS perfectly matches CANDELS depth

HUGS data public

Significantly improve the reliability of sample detection and SED analysis at z>3

Open a window on red galaxies at z>4

Allow to reliably measure the MF up to $z\sim7$

Public surveys delivers processed "clean" images that are not yet usable for science. Need to be translated into catalogs. This task:

- is time consuming / expensive: a bottleneck that hampers full scientific exploitation of the data;
- is still subject to considerable uncertainties: it presents conceptual challenges that need to be addressed

ASTRODEEP

Making Europe the world leader in the exploitation of the deepest multi-frequency data.

FP7 SPACE Program 4yr Program European Coordinator: Adriano Fontana

INAF-OAR (A. Fontana) University of Edinburgh (J. Dunlop) **CEA** (Paris) (D. Elbaz) CDS (Strasburg) (S. Derrier) +CANDELS (S. Faber, H. Ferguson)

ASTRODEEP

Making Europe the world leader in the exploitation of the deepest multi-frequency data.

Developed much improved techniques to obtain de-confused catalogs:

- T-PHOT (built over TFIT heritage) Merlin et al, 2015, A&A in press
- A new method for Herschel images (Tao Wang+ in prep)
- A prior-based method for X-ray data (Cappelluti et al in prep)

First application: Frontier Fields (A2744 & MACS0416)

Catalogues complete (HST + K + IRAC) - Delivered to FF team Castellano+, Merlin+, in prep

In progress:

- Revised GOODS-S photometry

In the long term, a priority list:

- Emphasis on Herschel data over CANDELS fields;
- Frontier Field #3 and #4
- Reprocessing CANDELS data in other 4 fields

ASTRODEEP

Making Europe the world leader in the exploitation of the deepest multi-frequency data.

Developed much improved techniques to obtain de-confused catalogs:

- T-PHOT (built over TFIT heritage) Merlin et al, 2015, A&A in press
- A new method for Herschel images (Tao Wang+ in prep)
- A prior-based method for X-ray data (Cappelluti et al in prep)

First application: Frontier Fields (A2744 & MACS0416)

Catalogues complete (HST + K + IRAC) - Delivered to FF team Castellano+, Merlin+, in prep

In the long term, a priority list:

- Emphasis on Herschel data over CANDELS fields;
- Frontier Field #3 and #4
- Reprocessing CANDELS data in other 4 fields

Summary

Hawk-I surveys can effectively complement medium-deep HST surveys;

HUGS perfectly matches CANDELS depth

HUGS data public

Significantly improve the reliability of sample detection and SED analysis at z>3

Open a window on red galaxies at z>4

Allow us to reliably measure the MF up to $z{\sim}7$

Passive galaxies at z>>2

A. Fontana et al.: The fraction of quiescent massive galaxies in the early Universe

19

Fig. 4. Examples of "red and dead" galaxies at z > 2.5. For each object, from left to right; the observed flux in the GOODS band and the best-

Traditional tau-model stink

I) Inclusion of a variety of SFH: constant, exp. declin, inverted tau, t^2exp-t/τ

Merlin+15

fitBC03_GOODS_YGUO_19b_55000_zOFF7.zbest

4

"Top-hat" (aka truncated) SFH BC03 + all metallicities + Calzetti law

New selection:

Use top-hat libraries with varying durations of the burst (tau parameter) from 0.3 to 3 Gyrs + dust reduced after burst max(E(B-V))=0.2 using CANDELS official photo-z

Models with age > 0 are after burst, passively evolving; models with age < 0 are still star forming ("age" has no sense)

K+IRAC1,2(,3,4) detected objects, z_off > 3, quiescent (sSFR<1/t_U(z));

fit them with the top-hat library and select sources which have NO star forming solutions with prob > 2%

IRAC1234 detected (193 sources):
 p*=2%: 34 sources
 p*=5%: 51 sources
 p*=10%: 67 sources
 p*=20%: 193 sources (ALL)

Redshift

How does it work?

SED fitting —> Stellar Mass (M) but also SFR, E(B-V), Age all with error budget!

The strength of CANDELS: an arena to compare different recipes

A CRITICAL ASSESSMENT OF PHOTOMETRIC REDSHIFT METHODS: A CANDELS INVESTIGATION

Tomas Dahlen¹, Bahram Mobasher², Sandra M. Faber³, Henry C Ferguson¹, Guillermo

photo-z error decreases from σ =5% to 3%

—> photo-z errors due to different recipes is the largest source of uncertainties

The very existence of passive galaxies at $z\sim0$ is a challenge to theoretical scenarios: need to avoid the "overcooling" problem.

AGN feedback is nowadays suggested as a main mechanism.

Passive galaxies at z≥ 2 are an even tougher challenge.. (e.g. Rodighiero+07, Kriek+08, Fontana+ 09,Domínguez Sánchez+11, Brammer 12 etc)

Fontana et al 2009

Straatman+14

The very existence of passive galaxies at $z\sim0$ is a challenge to theoretical scenarios: need to avoid the "overcooling" problem.

AGN feedback is nowadays suggested as a main mechanism.

Passive galaxies at z≥ 2 are an even tougher challenge.. (e.g. Rodighiero+07, Kriek+08, Fontana+ 09,Domínguez Sánchez+11, Brammer 12 etc)

Fontana et al 2009

Straatman+14

Constrain the physical properties of high z galaxies using the exquisite photometric quality of CANDELS data

Accurate SED fitting of the ~14 "best" LBG at z=3-4

10 objects from AMAZE/LSD survey+ 4 from public GMASS dataset

5 objects with stellar metallicity from UV absorption lines

All with gas-phase metallicity estimates

2.7<z<3.8

I.7 Gyr < U. age <2.4 Gyr

SFR is 2-5x larger than Madau98+Meurer99 relation

Castellano+14